agentic-system / space /learning.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
"""Enhanced learning mechanisms for reasoning strategies."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
@dataclass
class LearningEvent:
"""Event for strategy learning."""
strategy_type: str
event_type: str
data: Dict[str, Any]
outcome: Optional[float]
timestamp: datetime = field(default_factory=datetime.now)
class LearningMode(Enum):
"""Types of learning modes."""
SUPERVISED = "supervised"
REINFORCEMENT = "reinforcement"
ACTIVE = "active"
TRANSFER = "transfer"
META = "meta"
ENSEMBLE = "ensemble"
@dataclass
class LearningState:
"""State for learning process."""
mode: LearningMode
parameters: Dict[str, Any]
history: List[LearningEvent]
metrics: Dict[str, float]
metadata: Dict[str, Any] = field(default_factory=dict)
class EnhancedLearningManager:
"""
Advanced learning manager that:
1. Implements multiple learning modes
2. Tracks learning progress
3. Adapts learning parameters
4. Optimizes strategy performance
5. Transfers knowledge between strategies
"""
def __init__(self,
learning_rate: float = 0.1,
exploration_rate: float = 0.2,
memory_size: int = 1000):
self.learning_rate = learning_rate
self.exploration_rate = exploration_rate
self.memory_size = memory_size
# Learning states
self.states: Dict[str, LearningState] = {}
# Performance tracking
self.performance_history: List[Dict[str, Any]] = []
self.strategy_metrics: Dict[str, List[float]] = defaultdict(list)
# Knowledge transfer
self.knowledge_base: Dict[str, Any] = {}
self.transfer_history: List[Dict[str, Any]] = []
async def learn(self,
strategy_type: str,
event: LearningEvent,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Learn from strategy execution event."""
try:
# Initialize or get learning state
state = self._get_learning_state(strategy_type)
# Select learning mode
mode = await self._select_learning_mode(event, state, context)
# Execute learning
if mode == LearningMode.SUPERVISED:
result = await self._supervised_learning(event, state, context)
elif mode == LearningMode.REINFORCEMENT:
result = await self._reinforcement_learning(event, state, context)
elif mode == LearningMode.ACTIVE:
result = await self._active_learning(event, state, context)
elif mode == LearningMode.TRANSFER:
result = await self._transfer_learning(event, state, context)
elif mode == LearningMode.META:
result = await self._meta_learning(event, state, context)
elif mode == LearningMode.ENSEMBLE:
result = await self._ensemble_learning(event, state, context)
else:
raise ValueError(f"Unsupported learning mode: {mode}")
# Update state
self._update_learning_state(state, result)
# Record performance
self._record_performance(strategy_type, result)
return result
except Exception as e:
logging.error(f"Error in learning: {str(e)}")
return {
"success": False,
"error": str(e),
"mode": mode.value if 'mode' in locals() else None
}
async def _supervised_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement supervised learning."""
# Extract features and labels
features = await self._extract_features(event.data, context)
labels = event.outcome if event.outcome is not None else 0.0
# Train model
model_update = await self._update_model(features, labels, state, context)
# Validate performance
validation = await self._validate_model(model_update, state, context)
return {
"success": True,
"mode": LearningMode.SUPERVISED.value,
"model_update": model_update,
"validation": validation,
"metrics": {
"accuracy": validation.get("accuracy", 0.0),
"loss": validation.get("loss", 0.0)
}
}
async def _reinforcement_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement reinforcement learning."""
# Extract state and action
current_state = await self._extract_state(event.data, context)
action = event.data.get("action")
reward = event.outcome if event.outcome is not None else 0.0
# Update policy
policy_update = await self._update_policy(
current_state, action, reward, state, context)
# Optimize value function
value_update = await self._update_value_function(
current_state, reward, state, context)
return {
"success": True,
"mode": LearningMode.REINFORCEMENT.value,
"policy_update": policy_update,
"value_update": value_update,
"metrics": {
"reward": reward,
"value_error": value_update.get("error", 0.0)
}
}
async def _active_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement active learning."""
# Query selection
query = await self._select_query(event.data, state, context)
# Get feedback
feedback = await self._get_feedback(query, context)
# Update model
model_update = await self._update_model_active(
query, feedback, state, context)
return {
"success": True,
"mode": LearningMode.ACTIVE.value,
"query": query,
"feedback": feedback,
"model_update": model_update,
"metrics": {
"uncertainty": query.get("uncertainty", 0.0),
"feedback_quality": feedback.get("quality", 0.0)
}
}
async def _transfer_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement transfer learning."""
# Source task selection
source_task = await self._select_source_task(event.data, state, context)
# Knowledge extraction
knowledge = await self._extract_knowledge(source_task, context)
# Transfer adaptation
adaptation = await self._adapt_knowledge(
knowledge, event.data, state, context)
# Apply transfer
transfer = await self._apply_transfer(adaptation, state, context)
return {
"success": True,
"mode": LearningMode.TRANSFER.value,
"source_task": source_task,
"knowledge": knowledge,
"adaptation": adaptation,
"transfer": transfer,
"metrics": {
"transfer_efficiency": transfer.get("efficiency", 0.0),
"adaptation_quality": adaptation.get("quality", 0.0)
}
}
async def _meta_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement meta-learning."""
# Task characterization
task_char = await self._characterize_task(event.data, context)
# Strategy selection
strategy = await self._select_strategy(task_char, state, context)
# Parameter optimization
optimization = await self._optimize_parameters(
strategy, task_char, state, context)
# Apply meta-learning
meta_update = await self._apply_meta_learning(
optimization, state, context)
return {
"success": True,
"mode": LearningMode.META.value,
"task_characterization": task_char,
"strategy": strategy,
"optimization": optimization,
"meta_update": meta_update,
"metrics": {
"strategy_fit": strategy.get("fit_score", 0.0),
"optimization_improvement": optimization.get("improvement", 0.0)
}
}
async def _ensemble_learning(self,
event: LearningEvent,
state: LearningState,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Implement ensemble learning."""
# Member selection
members = await self._select_members(event.data, state, context)
# Weight optimization
weights = await self._optimize_weights(members, state, context)
# Combine predictions
combination = await self._combine_predictions(
members, weights, event.data, context)
return {
"success": True,
"mode": LearningMode.ENSEMBLE.value,
"members": members,
"weights": weights,
"combination": combination,
"metrics": {
"ensemble_diversity": weights.get("diversity", 0.0),
"combination_strength": combination.get("strength", 0.0)
}
}
def _get_learning_state(self, strategy_type: str) -> LearningState:
"""Get or initialize learning state for strategy."""
if strategy_type not in self.states:
self.states[strategy_type] = LearningState(
mode=LearningMode.SUPERVISED,
parameters={
"learning_rate": self.learning_rate,
"exploration_rate": self.exploration_rate
},
history=[],
metrics={}
)
return self.states[strategy_type]
def _update_learning_state(self, state: LearningState, result: Dict[str, Any]):
"""Update learning state with result."""
# Update history
state.history.append(LearningEvent(
strategy_type=result.get("strategy_type", "unknown"),
event_type="learning_update",
data=result,
outcome=result.get("metrics", {}).get("accuracy", 0.0),
timestamp=datetime.now()
))
# Update metrics
for metric, value in result.get("metrics", {}).items():
if metric in state.metrics:
state.metrics[metric] = (
0.9 * state.metrics[metric] + 0.1 * value # Exponential moving average
)
else:
state.metrics[metric] = value
# Adapt parameters
self._adapt_parameters(state, result)
def _record_performance(self, strategy_type: str, result: Dict[str, Any]):
"""Record learning performance."""
self.performance_history.append({
"timestamp": datetime.now().isoformat(),
"strategy_type": strategy_type,
"mode": result.get("mode"),
"metrics": result.get("metrics", {}),
"success": result.get("success", False)
})
# Update strategy metrics
for metric, value in result.get("metrics", {}).items():
self.strategy_metrics[f"{strategy_type}_{metric}"].append(value)
# Maintain memory size
if len(self.performance_history) > self.memory_size:
self.performance_history = self.performance_history[-self.memory_size:]
def _adapt_parameters(self, state: LearningState, result: Dict[str, Any]):
"""Adapt learning parameters based on performance."""
# Adapt learning rate
if "accuracy" in result.get("metrics", {}):
accuracy = result["metrics"]["accuracy"]
if accuracy > 0.8:
state.parameters["learning_rate"] *= 0.95 # Decrease if performing well
elif accuracy < 0.6:
state.parameters["learning_rate"] *= 1.05 # Increase if performing poorly
# Adapt exploration rate
if "reward" in result.get("metrics", {}):
reward = result["metrics"]["reward"]
if reward > 0:
state.parameters["exploration_rate"] *= 0.95 # Decrease if getting rewards
else:
state.parameters["exploration_rate"] *= 1.05 # Increase if not getting rewards
# Clip parameters to reasonable ranges
state.parameters["learning_rate"] = np.clip(
state.parameters["learning_rate"], 0.001, 0.5)
state.parameters["exploration_rate"] = np.clip(
state.parameters["exploration_rate"], 0.01, 0.5)
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get comprehensive performance metrics."""
return {
"learning_states": {
strategy_type: {
"mode": state.mode.value,
"parameters": state.parameters,
"metrics": state.metrics
}
for strategy_type, state in self.states.items()
},
"strategy_performance": {
metric: {
"mean": np.mean(values) if values else 0.0,
"std": np.std(values) if values else 0.0,
"min": min(values) if values else 0.0,
"max": max(values) if values else 0.0
}
for metric, values in self.strategy_metrics.items()
},
"transfer_metrics": {
"total_transfers": len(self.transfer_history),
"success_rate": sum(1 for t in self.transfer_history if t.get("success", False)) / len(self.transfer_history) if self.transfer_history else 0
}
}
def clear_history(self):
"""Clear learning history and reset states."""
self.states.clear()
self.performance_history.clear()
self.strategy_metrics.clear()
self.transfer_history.clear()