Spaces:
Runtime error
Runtime error
"""Unified reasoning engine that combines multiple reasoning strategies.""" | |
import logging | |
from typing import ( | |
Dict, Any, List, Optional, Set, Union, Type, | |
AsyncGenerator, Callable, Tuple, Generator | |
) | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import asyncio | |
from collections import defaultdict | |
import numpy as np | |
from .base import ReasoningStrategy, StrategyResult | |
from .groq_strategy import GroqStrategy | |
from .chain_of_thought import ChainOfThoughtStrategy | |
from .tree_of_thoughts import TreeOfThoughtsStrategy | |
from .meta_learning import MetaLearningStrategy | |
from .recursive import RecursiveStrategy | |
from .analogical import AnalogicalStrategy | |
from .local_llm import LocalLLMStrategy | |
from .agentic import ( | |
TaskDecompositionStrategy, | |
ResourceManagementStrategy, | |
ContextualPlanningStrategy, | |
AdaptiveExecutionStrategy, | |
FeedbackIntegrationStrategy | |
) | |
# Import additional strategies | |
from .bayesian import BayesianStrategy | |
from .market_analysis import MarketAnalysisStrategy | |
from .monetization import MonetizationStrategy | |
from .multimodal import MultimodalStrategy | |
from .neurosymbolic import NeurosymbolicStrategy | |
from .portfolio_optimization import PortfolioOptimizationStrategy | |
from .specialized import SpecializedStrategy | |
from .venture_strategies import VentureStrategy | |
from .venture_types import ( | |
AIInfrastructureStrategy, | |
AIConsultingStrategy, | |
AIProductStrategy, | |
FinTechStrategy, | |
HealthTechStrategy, | |
EdTechStrategy, | |
BlockchainStrategy, | |
AIMarketplaceStrategy | |
) | |
class StrategyType(str, Enum): | |
"""Types of reasoning strategies.""" | |
GROQ = "groq" | |
CHAIN_OF_THOUGHT = "chain_of_thought" | |
TREE_OF_THOUGHTS = "tree_of_thoughts" | |
META_LEARNING = "meta_learning" | |
RECURSIVE = "recursive" | |
ANALOGICAL = "analogical" | |
LOCAL_LLM = "local_llm" | |
TASK_DECOMPOSITION = "task_decomposition" | |
RESOURCE_MANAGEMENT = "resource_management" | |
CONTEXTUAL_PLANNING = "contextual_planning" | |
ADAPTIVE_EXECUTION = "adaptive_execution" | |
FEEDBACK_INTEGRATION = "feedback_integration" | |
BAYESIAN = "bayesian" | |
MARKET_ANALYSIS = "market_analysis" | |
MONETIZATION = "monetization" | |
MULTIMODAL = "multimodal" | |
NEUROSYMBOLIC = "neurosymbolic" | |
PORTFOLIO_OPTIMIZATION = "portfolio_optimization" | |
SPECIALIZED = "specialized" | |
VENTURE = "venture" | |
VENTURE_TYPE = "venture_type" | |
AI_INFRASTRUCTURE = "ai_infrastructure" | |
AI_CONSULTING = "ai_consulting" | |
AI_PRODUCT = "ai_product" | |
FINTECH = "fintech" | |
HEALTHTECH = "healthtech" | |
EDTECH = "edtech" | |
BLOCKCHAIN = "blockchain" | |
AI_MARKETPLACE = "ai_marketplace" | |
class UnifiedResult: | |
"""Combined result from multiple strategies.""" | |
success: bool | |
answer: str | |
confidence: float | |
strategy_results: Dict[StrategyType, StrategyResult] | |
synthesis_method: str | |
meta_insights: List[str] | |
performance_metrics: Dict[str, Any] | |
timestamp: datetime = field(default_factory=datetime.now) | |
class UnifiedReasoningEngine: | |
""" | |
Advanced unified reasoning engine that: | |
1. Combines multiple reasoning strategies | |
2. Dynamically selects and weights strategies | |
3. Synthesizes results from different approaches | |
4. Learns from experience | |
5. Adapts to different types of tasks | |
""" | |
def __init__(self, | |
min_confidence: float = 0.7, | |
strategy_weights: Optional[Dict[StrategyType, float]] = None, | |
parallel_threshold: int = 3, | |
learning_rate: float = 0.1): | |
self.min_confidence = min_confidence | |
self.parallel_threshold = parallel_threshold | |
self.learning_rate = learning_rate | |
# Initialize strategies | |
self.strategies: Dict[StrategyType, ReasoningStrategy] = { | |
# Primary strategy (Groq) | |
StrategyType.GROQ: GroqStrategy(), | |
# Core strategies | |
StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(), | |
StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(), | |
StrategyType.META_LEARNING: MetaLearningStrategy(), | |
StrategyType.RECURSIVE: RecursiveStrategy(), | |
StrategyType.ANALOGICAL: AnalogicalStrategy(), | |
StrategyType.LOCAL_LLM: LocalLLMStrategy(), | |
# Agentic strategies | |
StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(), | |
StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(), | |
StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(), | |
StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(), | |
StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(), | |
# Additional specialized strategies | |
StrategyType.BAYESIAN: BayesianStrategy(), | |
StrategyType.MARKET_ANALYSIS: MarketAnalysisStrategy(), | |
StrategyType.MONETIZATION: MonetizationStrategy(), | |
StrategyType.MULTIMODAL: MultimodalStrategy(), | |
StrategyType.NEUROSYMBOLIC: NeurosymbolicStrategy(), | |
StrategyType.PORTFOLIO_OPTIMIZATION: PortfolioOptimizationStrategy(), | |
StrategyType.SPECIALIZED: SpecializedStrategy(), | |
StrategyType.VENTURE: VentureStrategy(), | |
StrategyType.AI_INFRASTRUCTURE: AIInfrastructureStrategy(), | |
StrategyType.AI_CONSULTING: AIConsultingStrategy(), | |
StrategyType.AI_PRODUCT: AIProductStrategy(), | |
StrategyType.FINTECH: FinTechStrategy(), | |
StrategyType.HEALTHTECH: HealthTechStrategy(), | |
StrategyType.EDTECH: EdTechStrategy(), | |
StrategyType.BLOCKCHAIN: BlockchainStrategy(), | |
StrategyType.AI_MARKETPLACE: AIMarketplaceStrategy() | |
} | |
# Strategy weights with Groq as primary | |
self.strategy_weights = strategy_weights or { | |
# Primary strategy (highest weight) | |
StrategyType.GROQ: 2.5, | |
# Core strategies (high weights) | |
StrategyType.CHAIN_OF_THOUGHT: 1.5, | |
StrategyType.TREE_OF_THOUGHTS: 1.5, | |
StrategyType.META_LEARNING: 1.5, | |
# Agentic strategies (medium-high weights) | |
StrategyType.TASK_DECOMPOSITION: 1.3, | |
StrategyType.RESOURCE_MANAGEMENT: 1.3, | |
StrategyType.CONTEXTUAL_PLANNING: 1.3, | |
StrategyType.ADAPTIVE_EXECUTION: 1.3, | |
StrategyType.FEEDBACK_INTEGRATION: 1.3, | |
# Domain-specific strategies (context-dependent weights) | |
StrategyType.BAYESIAN: 1.2, | |
StrategyType.MARKET_ANALYSIS: 1.2, | |
StrategyType.PORTFOLIO_OPTIMIZATION: 1.2, | |
StrategyType.VENTURE: 1.2, | |
# Other specialized strategies (base weights) | |
StrategyType.MONETIZATION: 1.0, | |
StrategyType.MULTIMODAL: 1.0, | |
StrategyType.NEUROSYMBOLIC: 1.0, | |
StrategyType.SPECIALIZED: 1.0, | |
StrategyType.RECURSIVE: 1.0, | |
StrategyType.ANALOGICAL: 1.0, | |
StrategyType.LOCAL_LLM: 1.0, # Reduced weight since using Groq | |
StrategyType.AI_INFRASTRUCTURE: 1.0, | |
StrategyType.AI_CONSULTING: 1.0, | |
StrategyType.AI_PRODUCT: 1.0, | |
StrategyType.FINTECH: 1.0, | |
StrategyType.HEALTHTECH: 1.0, | |
StrategyType.EDTECH: 1.0, | |
StrategyType.BLOCKCHAIN: 1.0, | |
StrategyType.AI_MARKETPLACE: 1.0 | |
} | |
# Performance tracking | |
self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list) | |
self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float)) | |
self.synthesis_performance: Dict[str, List[float]] = defaultdict(list) | |
async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult: | |
"""Main reasoning method combining multiple strategies.""" | |
try: | |
# Analyze task | |
task_analysis = await self._analyze_task(query, context) | |
# Select strategies | |
selected_strategies = await self._select_strategies(task_analysis, context) | |
# Execute strategies | |
strategy_results = await self._execute_strategies( | |
selected_strategies, query, context) | |
# Synthesize results | |
unified_result = await self._synthesize_results( | |
strategy_results, task_analysis, context) | |
# Learn from experience | |
self._update_performance(unified_result) | |
return unified_result | |
except Exception as e: | |
logging.error(f"Error in unified reasoning: {str(e)}") | |
return UnifiedResult( | |
success=False, | |
answer=f"Error: {str(e)}", | |
confidence=0.0, | |
strategy_results={}, | |
synthesis_method="failed", | |
meta_insights=[f"Error occurred: {str(e)}"], | |
performance_metrics={} | |
) | |
async def reason_stream( | |
self, | |
query: str, | |
context: Dict[str, Any] = None, | |
strategy_type: Optional[StrategyType] = None, | |
chunk_handler: Optional[callable] = None | |
) -> AsyncGenerator[str, None]: | |
""" | |
Stream reasoning results from the selected strategy. | |
Args: | |
query: Query to reason about | |
context: Additional context for reasoning | |
strategy_type: Specific strategy to use (optional) | |
chunk_handler: Optional callback for handling chunks | |
""" | |
context = context or {} | |
# Default to Groq strategy for streaming | |
if not strategy_type: | |
strategy_type = StrategyType.GROQ | |
strategy = self.strategies.get(strategy_type) | |
if not strategy: | |
yield f"Error: Strategy {strategy_type} not found" | |
return | |
if not hasattr(strategy, 'reason_stream'): | |
yield f"Error: Strategy {strategy_type} does not support streaming" | |
return | |
try: | |
async for chunk in strategy.reason_stream( | |
query=query, | |
context=context, | |
chunk_handler=chunk_handler | |
): | |
yield chunk | |
except Exception as e: | |
logging.error(f"Streaming error: {str(e)}") | |
yield f"Error: {str(e)}" | |
async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze the task to determine optimal strategy selection.""" | |
prompt = f""" | |
Analyze reasoning task: | |
Query: {query} | |
Context: {json.dumps(context)} | |
Determine: | |
1. Task type and complexity | |
2. Required reasoning capabilities | |
3. Resource requirements | |
4. Success criteria | |
5. Risk factors | |
Format as: | |
[Analysis] | |
Type: ... | |
Complexity: ... | |
Capabilities: ... | |
Resources: ... | |
Criteria: ... | |
Risks: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_task_analysis(response["answer"]) | |
async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]: | |
"""Select appropriate strategies based on task analysis.""" | |
# Calculate strategy scores | |
scores: Dict[StrategyType, float] = {} | |
for strategy_type in StrategyType: | |
base_score = self.strategy_weights[strategy_type] | |
# Task type performance | |
task_type = task_analysis["type"] | |
type_score = self.task_type_performance[task_type][strategy_type] | |
# Recent performance | |
recent_performance = ( | |
sum(self.strategy_performance[strategy_type][-5:]) / 5 | |
if self.strategy_performance[strategy_type] else 0.5 | |
) | |
# Resource match | |
resource_match = self._calculate_resource_match( | |
strategy_type, task_analysis["resources"]) | |
# Capability match | |
capability_match = self._calculate_capability_match( | |
strategy_type, task_analysis["capabilities"]) | |
# Combined score | |
scores[strategy_type] = ( | |
0.3 * base_score + | |
0.2 * type_score + | |
0.2 * recent_performance + | |
0.15 * resource_match + | |
0.15 * capability_match | |
) | |
# Select top strategies | |
selected = sorted( | |
StrategyType, | |
key=lambda x: scores[x], | |
reverse=True | |
)[:self.parallel_threshold] | |
return selected | |
async def _execute_strategies(self, | |
strategies: List[StrategyType], | |
query: str, | |
context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]: | |
"""Execute selected strategies in parallel.""" | |
async def execute_strategy(strategy_type: StrategyType) -> StrategyResult: | |
strategy = self.strategies[strategy_type] | |
start_time = datetime.now() | |
try: | |
result = await strategy.reason(query, context) | |
return StrategyResult( | |
strategy_type=strategy_type, | |
success=result.get("success", False), | |
answer=result.get("answer"), | |
confidence=result.get("confidence", 0.0), | |
reasoning_trace=result.get("reasoning_trace", []), | |
metadata=result.get("metadata", {}), | |
performance_metrics={ | |
"execution_time": (datetime.now() - start_time).total_seconds(), | |
**result.get("performance_metrics", {}) | |
} | |
) | |
except Exception as e: | |
logging.error(f"Error in strategy {strategy_type}: {str(e)}") | |
return StrategyResult( | |
strategy_type=strategy_type, | |
success=False, | |
answer=None, | |
confidence=0.0, | |
reasoning_trace=[{"error": str(e)}], | |
metadata={}, | |
performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()} | |
) | |
# Execute strategies in parallel | |
tasks = [execute_strategy(strategy) for strategy in strategies] | |
results = await asyncio.gather(*tasks) | |
return {result.strategy_type: result for result in results} | |
async def _synthesize_results(self, | |
strategy_results: Dict[StrategyType, StrategyResult], | |
task_analysis: Dict[str, Any], | |
context: Dict[str, Any]) -> UnifiedResult: | |
"""Synthesize results from multiple strategies with specialized combination methods.""" | |
if not strategy_results: | |
return UnifiedResult( | |
success=False, | |
answer="No strategy results available", | |
confidence=0.0, | |
strategy_results={}, | |
synthesis_method="none", | |
meta_insights=[], | |
performance_metrics={} | |
) | |
# Group results by strategy category | |
core_results = {k: v for k, v in strategy_results.items() | |
if k in {StrategyType.CHAIN_OF_THOUGHT, StrategyType.TREE_OF_THOUGHTS, | |
StrategyType.META_LEARNING, StrategyType.LOCAL_LLM}} | |
agentic_results = {k: v for k, v in strategy_results.items() | |
if k in {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT, | |
StrategyType.CONTEXTUAL_PLANNING, StrategyType.ADAPTIVE_EXECUTION, | |
StrategyType.FEEDBACK_INTEGRATION}} | |
market_results = {k: v for k, v in strategy_results.items() | |
if k in {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION, | |
StrategyType.VENTURE, StrategyType.MONETIZATION}} | |
analytical_results = {k: v for k, v in strategy_results.items() | |
if k in {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC, | |
StrategyType.SPECIALIZED, StrategyType.MULTIMODAL}} | |
# Determine synthesis method based on task type and available results | |
task_type = task_analysis.get('task_type', 'general') | |
synthesis_method = self._determine_synthesis_method(task_type, strategy_results.keys()) | |
# Apply specialized synthesis based on method | |
if synthesis_method == "weighted_voting": | |
final_result = await self._weighted_voting_synthesis(strategy_results) | |
elif synthesis_method == "market_focused": | |
final_result = await self._market_focused_synthesis(market_results, core_results) | |
elif synthesis_method == "analytical_consensus": | |
final_result = await self._analytical_consensus_synthesis(analytical_results, core_results) | |
elif synthesis_method == "agentic_orchestration": | |
final_result = await self._agentic_orchestration_synthesis(agentic_results, strategy_results) | |
else: | |
final_result = await self._ensemble_synthesis(strategy_results) | |
# Generate meta-insights about the synthesis process | |
meta_insights = self._generate_meta_insights(strategy_results, synthesis_method) | |
# Calculate aggregate performance metrics | |
performance_metrics = self._calculate_synthesis_metrics(strategy_results, final_result) | |
return UnifiedResult( | |
success=final_result['success'], | |
answer=final_result['answer'], | |
confidence=final_result['confidence'], | |
strategy_results=strategy_results, | |
synthesis_method=synthesis_method, | |
meta_insights=meta_insights, | |
performance_metrics=performance_metrics | |
) | |
def _determine_synthesis_method(self, task_type: str, available_strategies: Set[StrategyType]) -> str: | |
"""Determine the best synthesis method based on task type and available strategies.""" | |
market_strategies = {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION, | |
StrategyType.VENTURE, StrategyType.MONETIZATION} | |
analytical_strategies = {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC} | |
agentic_strategies = {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT, | |
StrategyType.CONTEXTUAL_PLANNING} | |
# Calculate strategy type coverage | |
market_coverage = len(market_strategies.intersection(available_strategies)) | |
analytical_coverage = len(analytical_strategies.intersection(available_strategies)) | |
agentic_coverage = len(agentic_strategies.intersection(available_strategies)) | |
if task_type in ['market_analysis', 'investment'] and market_coverage >= 2: | |
return "market_focused" | |
elif task_type in ['analysis', 'prediction'] and analytical_coverage >= 2: | |
return "analytical_consensus" | |
elif task_type in ['planning', 'execution'] and agentic_coverage >= 2: | |
return "agentic_orchestration" | |
else: | |
return "weighted_voting" | |
async def _weighted_voting_synthesis(self, strategy_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Combine results using weighted voting based on strategy confidence and historical performance.""" | |
weighted_answers = defaultdict(float) | |
total_weight = 0 | |
for strategy_type, result in strategy_results.items(): | |
# Calculate weight based on strategy confidence and historical performance | |
historical_performance = np.mean(self.strategy_performance[strategy_type]) if self.strategy_performance[strategy_type] else 1.0 | |
weight = self.strategy_weights[strategy_type] * result.confidence * historical_performance | |
weighted_answers[result.answer] += weight | |
total_weight += weight | |
if not total_weight: | |
return {'success': False, 'answer': '', 'confidence': 0.0} | |
# Select answer with highest weighted votes | |
best_answer = max(weighted_answers.items(), key=lambda x: x[1]) | |
confidence = best_answer[1] / total_weight | |
return { | |
'success': confidence >= self.min_confidence, | |
'answer': best_answer[0], | |
'confidence': confidence | |
} | |
async def _market_focused_synthesis(self, market_results: Dict[StrategyType, StrategyResult], | |
core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Synthesize results with emphasis on market-related strategies.""" | |
market_consensus = await self._weighted_voting_synthesis(market_results) | |
core_consensus = await self._weighted_voting_synthesis(core_results) | |
# Combine market and core insights with higher weight for market results | |
if market_consensus['confidence'] >= self.min_confidence: | |
return { | |
'success': True, | |
'answer': f"{market_consensus['answer']} (Supported by core analysis: {core_consensus['answer']})", | |
'confidence': 0.7 * market_consensus['confidence'] + 0.3 * core_consensus['confidence'] | |
} | |
else: | |
return core_consensus | |
async def _analytical_consensus_synthesis(self, analytical_results: Dict[StrategyType, StrategyResult], | |
core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Synthesize results with emphasis on analytical and probabilistic reasoning.""" | |
analytical_consensus = await self._weighted_voting_synthesis(analytical_results) | |
core_consensus = await self._weighted_voting_synthesis(core_results) | |
# Combine analytical and core insights with uncertainty quantification | |
if analytical_consensus['confidence'] >= self.min_confidence: | |
return { | |
'success': True, | |
'answer': f"{analytical_consensus['answer']} (Confidence interval: {analytical_consensus['confidence']:.2f})", | |
'confidence': 0.6 * analytical_consensus['confidence'] + 0.4 * core_consensus['confidence'] | |
} | |
else: | |
return core_consensus | |
async def _agentic_orchestration_synthesis(self, agentic_results: Dict[StrategyType, StrategyResult], | |
all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Synthesize results with emphasis on task decomposition and execution planning.""" | |
# Extract task decomposition and planning insights | |
task_structure = self._extract_task_structure(agentic_results) | |
execution_plan = self._create_execution_plan(task_structure, all_results) | |
# Combine results according to the execution plan | |
synthesized_result = self._execute_synthesis_plan(execution_plan, all_results) | |
return { | |
'success': synthesized_result['confidence'] >= self.min_confidence, | |
'answer': synthesized_result['answer'], | |
'confidence': synthesized_result['confidence'] | |
} | |
def _generate_meta_insights(self, strategy_results: Dict[StrategyType, StrategyResult], | |
synthesis_method: str) -> List[str]: | |
"""Generate meta-insights about the synthesis process and strategy performance.""" | |
insights = [] | |
# Analyze strategy agreement | |
agreement_rate = self._calculate_strategy_agreement(strategy_results) | |
insights.append(f"Strategy agreement rate: {agreement_rate:.2f}") | |
# Identify strongest and weakest strategies | |
strategy_performances = [(st, res.confidence) for st, res in strategy_results.items()] | |
best_strategy = max(strategy_performances, key=lambda x: x[1]) | |
worst_strategy = min(strategy_performances, key=lambda x: x[1]) | |
insights.append(f"Most confident strategy: {best_strategy[0]} ({best_strategy[1]:.2f})") | |
insights.append(f"Synthesis method used: {synthesis_method}") | |
return insights | |
def _calculate_synthesis_metrics(self, strategy_results: Dict[StrategyType, StrategyResult], | |
final_result: Dict[str, Any]) -> Dict[str, Any]: | |
"""Calculate comprehensive metrics about the synthesis process.""" | |
return { | |
'strategy_count': len(strategy_results), | |
'average_confidence': np.mean([r.confidence for r in strategy_results.values()]), | |
'confidence_std': np.std([r.confidence for r in strategy_results.values()]), | |
'final_confidence': final_result['confidence'], | |
'strategy_agreement': self._calculate_strategy_agreement(strategy_results) | |
} | |
def _update_performance(self, result: UnifiedResult): | |
"""Update performance metrics and strategy weights.""" | |
# Update strategy performance | |
for strategy_type, strategy_result in result.strategy_results.items(): | |
self.strategy_performance[strategy_type].append(strategy_result.confidence) | |
# Update weights using exponential moving average | |
current_weight = self.strategy_weights[strategy_type] | |
performance = strategy_result.confidence | |
self.strategy_weights[strategy_type] = ( | |
(1 - self.learning_rate) * current_weight + | |
self.learning_rate * performance | |
) | |
# Update synthesis performance | |
self.synthesis_performance[result.synthesis_method].append(result.confidence) | |
def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float: | |
"""Calculate how well a strategy matches required resources.""" | |
# Implementation-specific resource matching logic | |
return 0.8 # Placeholder | |
def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float: | |
"""Calculate how well a strategy matches required capabilities.""" | |
# Implementation-specific capability matching logic | |
return 0.8 # Placeholder | |
def _parse_task_analysis(self, response: str) -> Dict[str, Any]: | |
"""Parse task analysis from response.""" | |
analysis = { | |
"type": "", | |
"complexity": 0.0, | |
"capabilities": [], | |
"resources": {}, | |
"criteria": [], | |
"risks": [] | |
} | |
for line in response.split('\n'): | |
line = line.strip() | |
if line.startswith('Type:'): | |
analysis["type"] = line[5:].strip() | |
elif line.startswith('Complexity:'): | |
try: | |
analysis["complexity"] = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Capabilities:'): | |
analysis["capabilities"] = [c.strip() for c in line[13:].split(',')] | |
elif line.startswith('Resources:'): | |
try: | |
analysis["resources"] = json.loads(line[10:].strip()) | |
except: | |
analysis["resources"] = {"raw": line[10:].strip()} | |
elif line.startswith('Criteria:'): | |
analysis["criteria"] = [c.strip() for c in line[9:].split(',')] | |
elif line.startswith('Risks:'): | |
analysis["risks"] = [r.strip() for r in line[7:].split(',')] | |
return analysis | |
def _parse_synthesis(self, response: str) -> Dict[str, Any]: | |
"""Parse synthesis result from response.""" | |
synthesis = { | |
"method": "", | |
"answer": "", | |
"confidence": 0.0, | |
"insights": [], | |
"performance": {} | |
} | |
for line in response.split('\n'): | |
line = line.strip() | |
if line.startswith('Method:'): | |
synthesis["method"] = line[7:].strip() | |
elif line.startswith('Answer:'): | |
synthesis["answer"] = line[7:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
synthesis["confidence"] = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Insights:'): | |
synthesis["insights"] = [i.strip() for i in line[9:].split(',')] | |
elif line.startswith('Performance:'): | |
try: | |
synthesis["performance"] = json.loads(line[12:].strip()) | |
except: | |
synthesis["performance"] = {"raw": line[12:].strip()} | |
return synthesis | |
def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]: | |
"""Convert strategy result to dictionary for serialization.""" | |
return { | |
"strategy_type": result.strategy_type.value, | |
"success": result.success, | |
"answer": result.answer, | |
"confidence": result.confidence, | |
"reasoning_trace": result.reasoning_trace, | |
"metadata": result.metadata, | |
"performance_metrics": result.performance_metrics, | |
"timestamp": result.timestamp.isoformat() | |
} | |
def get_performance_metrics(self) -> Dict[str, Any]: | |
"""Get comprehensive performance metrics.""" | |
return { | |
"strategy_weights": dict(self.strategy_weights), | |
"average_performance": { | |
strategy_type.value: sum(scores) / len(scores) if scores else 0 | |
for strategy_type, scores in self.strategy_performance.items() | |
}, | |
"synthesis_success": { | |
method: sum(scores) / len(scores) if scores else 0 | |
for method, scores in self.synthesis_performance.items() | |
}, | |
"task_type_performance": { | |
task_type: dict(strategy_scores) | |
for task_type, strategy_scores in self.task_type_performance.items() | |
} | |
} | |
def clear_performance_history(self): | |
"""Clear performance history and reset weights.""" | |
self.strategy_performance.clear() | |
self.task_type_performance.clear() | |
self.synthesis_performance.clear() | |
self.strategy_weights = { | |
strategy_type: 1.0 for strategy_type in StrategyType | |
} | |
def _extract_task_structure(self, agentic_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Extract task structure from agentic strategy results.""" | |
# Implementation-specific task structure extraction logic | |
return {} | |
def _create_execution_plan(self, task_structure: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Create execution plan based on task structure and strategy results.""" | |
# Implementation-specific execution plan creation logic | |
return {} | |
def _execute_synthesis_plan(self, execution_plan: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]: | |
"""Execute synthesis plan and combine results.""" | |
# Implementation-specific synthesis plan execution logic | |
return {} | |
def _calculate_strategy_agreement(self, strategy_results: Dict[StrategyType, StrategyResult]) -> float: | |
"""Calculate agreement rate among strategies.""" | |
# Implementation-specific strategy agreement calculation logic | |
return 0.0 | |