File size: 32,229 Bytes
1d75522
 
 
3feffc7
 
 
 
1d75522
 
 
 
 
 
 
 
c7d9c30
1d75522
 
 
 
5ac18f6
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
fda983b
1d75522
fda983b
1d75522
e2e5ce2
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e5ce2
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac18f6
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e5ce2
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e5ce2
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""Unified reasoning engine that combines multiple reasoning strategies."""

import logging
from typing import (
    Dict, Any, List, Optional, Set, Union, Type,
    AsyncGenerator, Callable, Tuple, Generator
)
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
import numpy as np

from .base import ReasoningStrategy, StrategyResult
from .groq_strategy import GroqStrategy
from .chain_of_thought import ChainOfThoughtStrategy
from .tree_of_thoughts import TreeOfThoughtsStrategy
from .meta_learning import MetaLearningStrategy
from .recursive import RecursiveStrategy
from .analogical import AnalogicalStrategy
from .local_llm import LocalLLMStrategy
from .agentic import (
    TaskDecompositionStrategy,
    ResourceManagementStrategy,
    ContextualPlanningStrategy,
    AdaptiveExecutionStrategy,
    FeedbackIntegrationStrategy
)
# Import additional strategies
from .bayesian import BayesianStrategy
from .market_analysis import MarketAnalysisStrategy
from .monetization import MonetizationStrategy
from .multimodal import MultimodalStrategy
from .neurosymbolic import NeurosymbolicStrategy
from .portfolio_optimization import PortfolioOptimizationStrategy
from .specialized import SpecializedStrategy
from .venture_strategies import VentureStrategy
from .venture_types import (
    AIInfrastructureStrategy,
    AIConsultingStrategy,
    AIProductStrategy,
    FinTechStrategy,
    HealthTechStrategy,
    EdTechStrategy,
    BlockchainStrategy,
    AIMarketplaceStrategy
)

class StrategyType(str, Enum):
    """Types of reasoning strategies."""
    GROQ = "groq"
    CHAIN_OF_THOUGHT = "chain_of_thought"
    TREE_OF_THOUGHTS = "tree_of_thoughts"
    META_LEARNING = "meta_learning"
    RECURSIVE = "recursive"
    ANALOGICAL = "analogical"
    LOCAL_LLM = "local_llm"
    TASK_DECOMPOSITION = "task_decomposition"
    RESOURCE_MANAGEMENT = "resource_management"
    CONTEXTUAL_PLANNING = "contextual_planning"
    ADAPTIVE_EXECUTION = "adaptive_execution"
    FEEDBACK_INTEGRATION = "feedback_integration"
    BAYESIAN = "bayesian"
    MARKET_ANALYSIS = "market_analysis"
    MONETIZATION = "monetization"
    MULTIMODAL = "multimodal"
    NEUROSYMBOLIC = "neurosymbolic"
    PORTFOLIO_OPTIMIZATION = "portfolio_optimization"
    SPECIALIZED = "specialized"
    VENTURE = "venture"
    VENTURE_TYPE = "venture_type"
    AI_INFRASTRUCTURE = "ai_infrastructure"
    AI_CONSULTING = "ai_consulting"
    AI_PRODUCT = "ai_product"
    FINTECH = "fintech"
    HEALTHTECH = "healthtech"
    EDTECH = "edtech"
    BLOCKCHAIN = "blockchain"
    AI_MARKETPLACE = "ai_marketplace"

@dataclass
class UnifiedResult:
    """Combined result from multiple strategies."""
    success: bool
    answer: str
    confidence: float
    strategy_results: Dict[StrategyType, StrategyResult]
    synthesis_method: str
    meta_insights: List[str]
    performance_metrics: Dict[str, Any]
    timestamp: datetime = field(default_factory=datetime.now)

class UnifiedReasoningEngine:
    """
    Advanced unified reasoning engine that:
    1. Combines multiple reasoning strategies
    2. Dynamically selects and weights strategies
    3. Synthesizes results from different approaches
    4. Learns from experience
    5. Adapts to different types of tasks
    """
    
    def __init__(self,
                 min_confidence: float = 0.7,
                 strategy_weights: Optional[Dict[StrategyType, float]] = None,
                 parallel_threshold: int = 3,
                 learning_rate: float = 0.1):
        self.min_confidence = min_confidence
        self.parallel_threshold = parallel_threshold
        self.learning_rate = learning_rate
        
        # Initialize strategies
        self.strategies: Dict[StrategyType, ReasoningStrategy] = {
            # Primary strategy (Groq)
            StrategyType.GROQ: GroqStrategy(),
            
            # Core strategies
            StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(),
            StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(),
            StrategyType.META_LEARNING: MetaLearningStrategy(),
            StrategyType.RECURSIVE: RecursiveStrategy(),
            StrategyType.ANALOGICAL: AnalogicalStrategy(),
            StrategyType.LOCAL_LLM: LocalLLMStrategy(),
            
            # Agentic strategies
            StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(),
            StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(),
            StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(),
            StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(),
            StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(),
            
            # Additional specialized strategies
            StrategyType.BAYESIAN: BayesianStrategy(),
            StrategyType.MARKET_ANALYSIS: MarketAnalysisStrategy(),
            StrategyType.MONETIZATION: MonetizationStrategy(),
            StrategyType.MULTIMODAL: MultimodalStrategy(),
            StrategyType.NEUROSYMBOLIC: NeurosymbolicStrategy(),
            StrategyType.PORTFOLIO_OPTIMIZATION: PortfolioOptimizationStrategy(),
            StrategyType.SPECIALIZED: SpecializedStrategy(),
            StrategyType.VENTURE: VentureStrategy(),
            StrategyType.AI_INFRASTRUCTURE: AIInfrastructureStrategy(),
            StrategyType.AI_CONSULTING: AIConsultingStrategy(),
            StrategyType.AI_PRODUCT: AIProductStrategy(),
            StrategyType.FINTECH: FinTechStrategy(),
            StrategyType.HEALTHTECH: HealthTechStrategy(),
            StrategyType.EDTECH: EdTechStrategy(),
            StrategyType.BLOCKCHAIN: BlockchainStrategy(),
            StrategyType.AI_MARKETPLACE: AIMarketplaceStrategy()
        }
        
        # Strategy weights with Groq as primary
        self.strategy_weights = strategy_weights or {
            # Primary strategy (highest weight)
            StrategyType.GROQ: 2.5,
            
            # Core strategies (high weights)
            StrategyType.CHAIN_OF_THOUGHT: 1.5,
            StrategyType.TREE_OF_THOUGHTS: 1.5,
            StrategyType.META_LEARNING: 1.5,
            
            # Agentic strategies (medium-high weights)
            StrategyType.TASK_DECOMPOSITION: 1.3,
            StrategyType.RESOURCE_MANAGEMENT: 1.3,
            StrategyType.CONTEXTUAL_PLANNING: 1.3,
            StrategyType.ADAPTIVE_EXECUTION: 1.3,
            StrategyType.FEEDBACK_INTEGRATION: 1.3,
            
            # Domain-specific strategies (context-dependent weights)
            StrategyType.BAYESIAN: 1.2,
            StrategyType.MARKET_ANALYSIS: 1.2,
            StrategyType.PORTFOLIO_OPTIMIZATION: 1.2,
            StrategyType.VENTURE: 1.2,
            
            # Other specialized strategies (base weights)
            StrategyType.MONETIZATION: 1.0,
            StrategyType.MULTIMODAL: 1.0,
            StrategyType.NEUROSYMBOLIC: 1.0,
            StrategyType.SPECIALIZED: 1.0,
            StrategyType.RECURSIVE: 1.0,
            StrategyType.ANALOGICAL: 1.0,
            StrategyType.LOCAL_LLM: 1.0,  # Reduced weight since using Groq
            StrategyType.AI_INFRASTRUCTURE: 1.0,
            StrategyType.AI_CONSULTING: 1.0,
            StrategyType.AI_PRODUCT: 1.0,
            StrategyType.FINTECH: 1.0,
            StrategyType.HEALTHTECH: 1.0,
            StrategyType.EDTECH: 1.0,
            StrategyType.BLOCKCHAIN: 1.0,
            StrategyType.AI_MARKETPLACE: 1.0
        }
        
        # Performance tracking
        self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list)
        self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float))
        self.synthesis_performance: Dict[str, List[float]] = defaultdict(list)

    async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult:
        """Main reasoning method combining multiple strategies."""
        try:
            # Analyze task
            task_analysis = await self._analyze_task(query, context)
            
            # Select strategies
            selected_strategies = await self._select_strategies(task_analysis, context)
            
            # Execute strategies
            strategy_results = await self._execute_strategies(
                selected_strategies, query, context)
            
            # Synthesize results
            unified_result = await self._synthesize_results(
                strategy_results, task_analysis, context)
            
            # Learn from experience
            self._update_performance(unified_result)
            
            return unified_result
            
        except Exception as e:
            logging.error(f"Error in unified reasoning: {str(e)}")
            return UnifiedResult(
                success=False,
                answer=f"Error: {str(e)}",
                confidence=0.0,
                strategy_results={},
                synthesis_method="failed",
                meta_insights=[f"Error occurred: {str(e)}"],
                performance_metrics={}
            )

    async def reason_stream(
        self,
        query: str,
        context: Dict[str, Any] = None,
        strategy_type: Optional[StrategyType] = None,
        chunk_handler: Optional[callable] = None
    ) -> AsyncGenerator[str, None]:
        """
        Stream reasoning results from the selected strategy.
        
        Args:
            query: Query to reason about
            context: Additional context for reasoning
            strategy_type: Specific strategy to use (optional)
            chunk_handler: Optional callback for handling chunks
        """
        context = context or {}
        
        # Default to Groq strategy for streaming
        if not strategy_type:
            strategy_type = StrategyType.GROQ
        
        strategy = self.strategies.get(strategy_type)
        if not strategy:
            yield f"Error: Strategy {strategy_type} not found"
            return
        
        if not hasattr(strategy, 'reason_stream'):
            yield f"Error: Strategy {strategy_type} does not support streaming"
            return
        
        try:
            async for chunk in strategy.reason_stream(
                query=query,
                context=context,
                chunk_handler=chunk_handler
            ):
                yield chunk
        except Exception as e:
            logging.error(f"Streaming error: {str(e)}")
            yield f"Error: {str(e)}"

    async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze the task to determine optimal strategy selection."""
        prompt = f"""
        Analyze reasoning task:
        Query: {query}
        Context: {json.dumps(context)}
        
        Determine:
        1. Task type and complexity
        2. Required reasoning capabilities
        3. Resource requirements
        4. Success criteria
        5. Risk factors
        
        Format as:
        [Analysis]
        Type: ...
        Complexity: ...
        Capabilities: ...
        Resources: ...
        Criteria: ...
        Risks: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_task_analysis(response["answer"])

    async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]:
        """Select appropriate strategies based on task analysis."""
        # Calculate strategy scores
        scores: Dict[StrategyType, float] = {}
        for strategy_type in StrategyType:
            base_score = self.strategy_weights[strategy_type]
            
            # Task type performance
            task_type = task_analysis["type"]
            type_score = self.task_type_performance[task_type][strategy_type]
            
            # Recent performance
            recent_performance = (
                sum(self.strategy_performance[strategy_type][-5:]) / 5
                if self.strategy_performance[strategy_type] else 0.5
            )
            
            # Resource match
            resource_match = self._calculate_resource_match(
                strategy_type, task_analysis["resources"])
            
            # Capability match
            capability_match = self._calculate_capability_match(
                strategy_type, task_analysis["capabilities"])
            
            # Combined score
            scores[strategy_type] = (
                0.3 * base_score +
                0.2 * type_score +
                0.2 * recent_performance +
                0.15 * resource_match +
                0.15 * capability_match
            )
        
        # Select top strategies
        selected = sorted(
            StrategyType,
            key=lambda x: scores[x],
            reverse=True
        )[:self.parallel_threshold]
        
        return selected

    async def _execute_strategies(self,
                                strategies: List[StrategyType],
                                query: str,
                                context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]:
        """Execute selected strategies in parallel."""
        async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
            strategy = self.strategies[strategy_type]
            start_time = datetime.now()
            
            try:
                result = await strategy.reason(query, context)
                
                return StrategyResult(
                    strategy_type=strategy_type,
                    success=result.get("success", False),
                    answer=result.get("answer"),
                    confidence=result.get("confidence", 0.0),
                    reasoning_trace=result.get("reasoning_trace", []),
                    metadata=result.get("metadata", {}),
                    performance_metrics={
                        "execution_time": (datetime.now() - start_time).total_seconds(),
                        **result.get("performance_metrics", {})
                    }
                )
            except Exception as e:
                logging.error(f"Error in strategy {strategy_type}: {str(e)}")
                return StrategyResult(
                    strategy_type=strategy_type,
                    success=False,
                    answer=None,
                    confidence=0.0,
                    reasoning_trace=[{"error": str(e)}],
                    metadata={},
                    performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()}
                )
        
        # Execute strategies in parallel
        tasks = [execute_strategy(strategy) for strategy in strategies]
        results = await asyncio.gather(*tasks)
        
        return {result.strategy_type: result for result in results}

    async def _synthesize_results(self,
                                strategy_results: Dict[StrategyType, StrategyResult],
                                task_analysis: Dict[str, Any],
                                context: Dict[str, Any]) -> UnifiedResult:
        """Synthesize results from multiple strategies with specialized combination methods."""
        if not strategy_results:
            return UnifiedResult(
                success=False,
                answer="No strategy results available",
                confidence=0.0,
                strategy_results={},
                synthesis_method="none",
                meta_insights=[],
                performance_metrics={}
            )

        # Group results by strategy category
        core_results = {k: v for k, v in strategy_results.items() 
                       if k in {StrategyType.CHAIN_OF_THOUGHT, StrategyType.TREE_OF_THOUGHTS, 
                              StrategyType.META_LEARNING, StrategyType.LOCAL_LLM}}
        
        agentic_results = {k: v for k, v in strategy_results.items()
                          if k in {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT,
                                 StrategyType.CONTEXTUAL_PLANNING, StrategyType.ADAPTIVE_EXECUTION,
                                 StrategyType.FEEDBACK_INTEGRATION}}
        
        market_results = {k: v for k, v in strategy_results.items()
                         if k in {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION,
                                StrategyType.VENTURE, StrategyType.MONETIZATION}}
        
        analytical_results = {k: v for k, v in strategy_results.items()
                            if k in {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC,
                                   StrategyType.SPECIALIZED, StrategyType.MULTIMODAL}}

        # Determine synthesis method based on task type and available results
        task_type = task_analysis.get('task_type', 'general')
        synthesis_method = self._determine_synthesis_method(task_type, strategy_results.keys())

        # Apply specialized synthesis based on method
        if synthesis_method == "weighted_voting":
            final_result = await self._weighted_voting_synthesis(strategy_results)
        elif synthesis_method == "market_focused":
            final_result = await self._market_focused_synthesis(market_results, core_results)
        elif synthesis_method == "analytical_consensus":
            final_result = await self._analytical_consensus_synthesis(analytical_results, core_results)
        elif synthesis_method == "agentic_orchestration":
            final_result = await self._agentic_orchestration_synthesis(agentic_results, strategy_results)
        else:
            final_result = await self._ensemble_synthesis(strategy_results)

        # Generate meta-insights about the synthesis process
        meta_insights = self._generate_meta_insights(strategy_results, synthesis_method)

        # Calculate aggregate performance metrics
        performance_metrics = self._calculate_synthesis_metrics(strategy_results, final_result)

        return UnifiedResult(
            success=final_result['success'],
            answer=final_result['answer'],
            confidence=final_result['confidence'],
            strategy_results=strategy_results,
            synthesis_method=synthesis_method,
            meta_insights=meta_insights,
            performance_metrics=performance_metrics
        )

    def _determine_synthesis_method(self, task_type: str, available_strategies: Set[StrategyType]) -> str:
        """Determine the best synthesis method based on task type and available strategies."""
        market_strategies = {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION,
                           StrategyType.VENTURE, StrategyType.MONETIZATION}
        analytical_strategies = {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC}
        agentic_strategies = {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT,
                            StrategyType.CONTEXTUAL_PLANNING}

        # Calculate strategy type coverage
        market_coverage = len(market_strategies.intersection(available_strategies))
        analytical_coverage = len(analytical_strategies.intersection(available_strategies))
        agentic_coverage = len(agentic_strategies.intersection(available_strategies))

        if task_type in ['market_analysis', 'investment'] and market_coverage >= 2:
            return "market_focused"
        elif task_type in ['analysis', 'prediction'] and analytical_coverage >= 2:
            return "analytical_consensus"
        elif task_type in ['planning', 'execution'] and agentic_coverage >= 2:
            return "agentic_orchestration"
        else:
            return "weighted_voting"

    async def _weighted_voting_synthesis(self, strategy_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Combine results using weighted voting based on strategy confidence and historical performance."""
        weighted_answers = defaultdict(float)
        total_weight = 0

        for strategy_type, result in strategy_results.items():
            # Calculate weight based on strategy confidence and historical performance
            historical_performance = np.mean(self.strategy_performance[strategy_type]) if self.strategy_performance[strategy_type] else 1.0
            weight = self.strategy_weights[strategy_type] * result.confidence * historical_performance
            
            weighted_answers[result.answer] += weight
            total_weight += weight

        if not total_weight:
            return {'success': False, 'answer': '', 'confidence': 0.0}

        # Select answer with highest weighted votes
        best_answer = max(weighted_answers.items(), key=lambda x: x[1])
        confidence = best_answer[1] / total_weight

        return {
            'success': confidence >= self.min_confidence,
            'answer': best_answer[0],
            'confidence': confidence
        }

    async def _market_focused_synthesis(self, market_results: Dict[StrategyType, StrategyResult],
                                      core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Synthesize results with emphasis on market-related strategies."""
        market_consensus = await self._weighted_voting_synthesis(market_results)
        core_consensus = await self._weighted_voting_synthesis(core_results)

        # Combine market and core insights with higher weight for market results
        if market_consensus['confidence'] >= self.min_confidence:
            return {
                'success': True,
                'answer': f"{market_consensus['answer']} (Supported by core analysis: {core_consensus['answer']})",
                'confidence': 0.7 * market_consensus['confidence'] + 0.3 * core_consensus['confidence']
            }
        else:
            return core_consensus

    async def _analytical_consensus_synthesis(self, analytical_results: Dict[StrategyType, StrategyResult],
                                           core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Synthesize results with emphasis on analytical and probabilistic reasoning."""
        analytical_consensus = await self._weighted_voting_synthesis(analytical_results)
        core_consensus = await self._weighted_voting_synthesis(core_results)

        # Combine analytical and core insights with uncertainty quantification
        if analytical_consensus['confidence'] >= self.min_confidence:
            return {
                'success': True,
                'answer': f"{analytical_consensus['answer']} (Confidence interval: {analytical_consensus['confidence']:.2f})",
                'confidence': 0.6 * analytical_consensus['confidence'] + 0.4 * core_consensus['confidence']
            }
        else:
            return core_consensus

    async def _agentic_orchestration_synthesis(self, agentic_results: Dict[StrategyType, StrategyResult],
                                             all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Synthesize results with emphasis on task decomposition and execution planning."""
        # Extract task decomposition and planning insights
        task_structure = self._extract_task_structure(agentic_results)
        execution_plan = self._create_execution_plan(task_structure, all_results)

        # Combine results according to the execution plan
        synthesized_result = self._execute_synthesis_plan(execution_plan, all_results)

        return {
            'success': synthesized_result['confidence'] >= self.min_confidence,
            'answer': synthesized_result['answer'],
            'confidence': synthesized_result['confidence']
        }

    def _generate_meta_insights(self, strategy_results: Dict[StrategyType, StrategyResult],
                              synthesis_method: str) -> List[str]:
        """Generate meta-insights about the synthesis process and strategy performance."""
        insights = []
        
        # Analyze strategy agreement
        agreement_rate = self._calculate_strategy_agreement(strategy_results)
        insights.append(f"Strategy agreement rate: {agreement_rate:.2f}")

        # Identify strongest and weakest strategies
        strategy_performances = [(st, res.confidence) for st, res in strategy_results.items()]
        best_strategy = max(strategy_performances, key=lambda x: x[1])
        worst_strategy = min(strategy_performances, key=lambda x: x[1])
        
        insights.append(f"Most confident strategy: {best_strategy[0]} ({best_strategy[1]:.2f})")
        insights.append(f"Synthesis method used: {synthesis_method}")

        return insights

    def _calculate_synthesis_metrics(self, strategy_results: Dict[StrategyType, StrategyResult],
                                  final_result: Dict[str, Any]) -> Dict[str, Any]:
        """Calculate comprehensive metrics about the synthesis process."""
        return {
            'strategy_count': len(strategy_results),
            'average_confidence': np.mean([r.confidence for r in strategy_results.values()]),
            'confidence_std': np.std([r.confidence for r in strategy_results.values()]),
            'final_confidence': final_result['confidence'],
            'strategy_agreement': self._calculate_strategy_agreement(strategy_results)
        }

    def _update_performance(self, result: UnifiedResult):
        """Update performance metrics and strategy weights."""
        # Update strategy performance
        for strategy_type, strategy_result in result.strategy_results.items():
            self.strategy_performance[strategy_type].append(strategy_result.confidence)
            
            # Update weights using exponential moving average
            current_weight = self.strategy_weights[strategy_type]
            performance = strategy_result.confidence
            self.strategy_weights[strategy_type] = (
                (1 - self.learning_rate) * current_weight +
                self.learning_rate * performance
            )
        
        # Update synthesis performance
        self.synthesis_performance[result.synthesis_method].append(result.confidence)

    def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float:
        """Calculate how well a strategy matches required resources."""
        # Implementation-specific resource matching logic
        return 0.8  # Placeholder

    def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float:
        """Calculate how well a strategy matches required capabilities."""
        # Implementation-specific capability matching logic
        return 0.8  # Placeholder

    def _parse_task_analysis(self, response: str) -> Dict[str, Any]:
        """Parse task analysis from response."""
        analysis = {
            "type": "",
            "complexity": 0.0,
            "capabilities": [],
            "resources": {},
            "criteria": [],
            "risks": []
        }
        
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Type:'):
                analysis["type"] = line[5:].strip()
            elif line.startswith('Complexity:'):
                try:
                    analysis["complexity"] = float(line[11:].strip())
                except:
                    pass
            elif line.startswith('Capabilities:'):
                analysis["capabilities"] = [c.strip() for c in line[13:].split(',')]
            elif line.startswith('Resources:'):
                try:
                    analysis["resources"] = json.loads(line[10:].strip())
                except:
                    analysis["resources"] = {"raw": line[10:].strip()}
            elif line.startswith('Criteria:'):
                analysis["criteria"] = [c.strip() for c in line[9:].split(',')]
            elif line.startswith('Risks:'):
                analysis["risks"] = [r.strip() for r in line[7:].split(',')]
        
        return analysis

    def _parse_synthesis(self, response: str) -> Dict[str, Any]:
        """Parse synthesis result from response."""
        synthesis = {
            "method": "",
            "answer": "",
            "confidence": 0.0,
            "insights": [],
            "performance": {}
        }
        
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Method:'):
                synthesis["method"] = line[7:].strip()
            elif line.startswith('Answer:'):
                synthesis["answer"] = line[7:].strip()
            elif line.startswith('Confidence:'):
                try:
                    synthesis["confidence"] = float(line[11:].strip())
                except:
                    pass
            elif line.startswith('Insights:'):
                synthesis["insights"] = [i.strip() for i in line[9:].split(',')]
            elif line.startswith('Performance:'):
                try:
                    synthesis["performance"] = json.loads(line[12:].strip())
                except:
                    synthesis["performance"] = {"raw": line[12:].strip()}
        
        return synthesis

    def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]:
        """Convert strategy result to dictionary for serialization."""
        return {
            "strategy_type": result.strategy_type.value,
            "success": result.success,
            "answer": result.answer,
            "confidence": result.confidence,
            "reasoning_trace": result.reasoning_trace,
            "metadata": result.metadata,
            "performance_metrics": result.performance_metrics,
            "timestamp": result.timestamp.isoformat()
        }

    def get_performance_metrics(self) -> Dict[str, Any]:
        """Get comprehensive performance metrics."""
        return {
            "strategy_weights": dict(self.strategy_weights),
            "average_performance": {
                strategy_type.value: sum(scores) / len(scores) if scores else 0
                for strategy_type, scores in self.strategy_performance.items()
            },
            "synthesis_success": {
                method: sum(scores) / len(scores) if scores else 0
                for method, scores in self.synthesis_performance.items()
            },
            "task_type_performance": {
                task_type: dict(strategy_scores)
                for task_type, strategy_scores in self.task_type_performance.items()
            }
        }

    def clear_performance_history(self):
        """Clear performance history and reset weights."""
        self.strategy_performance.clear()
        self.task_type_performance.clear()
        self.synthesis_performance.clear()
        self.strategy_weights = {
            strategy_type: 1.0 for strategy_type in StrategyType
        }

    def _extract_task_structure(self, agentic_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Extract task structure from agentic strategy results."""
        # Implementation-specific task structure extraction logic
        return {}

    def _create_execution_plan(self, task_structure: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Create execution plan based on task structure and strategy results."""
        # Implementation-specific execution plan creation logic
        return {}

    def _execute_synthesis_plan(self, execution_plan: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
        """Execute synthesis plan and combine results."""
        # Implementation-specific synthesis plan execution logic
        return {}

    def _calculate_strategy_agreement(self, strategy_results: Dict[StrategyType, StrategyResult]) -> float:
        """Calculate agreement rate among strategies."""
        # Implementation-specific strategy agreement calculation logic
        return 0.0