agentic-system / reasoning /tree_of_thoughts.py
Cascade Bot
fix: add AsyncGenerator and Generator typing imports
3feffc7
"""Tree of Thoughts reasoning implementation with advanced tree exploration."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, AsyncGenerator, Generator
import json
from dataclasses import dataclass
from enum import Enum
import heapq
from collections import defaultdict
from datetime import datetime
from .base import ReasoningStrategy, StrategyResult
class NodeType(Enum):
"""Types of nodes in the thought tree."""
ROOT = "root"
HYPOTHESIS = "hypothesis"
EVIDENCE = "evidence"
ANALYSIS = "analysis"
SYNTHESIS = "synthesis"
EVALUATION = "evaluation"
CONCLUSION = "conclusion"
@dataclass
class TreeNode:
"""Represents a node in the thought tree."""
id: str
type: NodeType
content: str
confidence: float
children: List['TreeNode']
parent: Optional['TreeNode']
metadata: Dict[str, Any]
depth: int
evaluation_score: float = 0.0
timestamp: str = datetime.now().isoformat()
class TreeOfThoughtsStrategy(ReasoningStrategy):
"""
Advanced Tree of Thoughts reasoning implementation with:
- Beam search for path exploration
- Dynamic node evaluation
- Pruning strategies
- Path optimization
- Meta-learning from tree patterns
"""
def __init__(self,
min_confidence: float = 0.7,
parallel_threshold: int = 3,
learning_rate: float = 0.1,
strategy_weights: Optional[Dict[str, float]] = None):
"""Initialize Tree of Thoughts reasoning."""
super().__init__()
self.min_confidence = min_confidence
self.parallel_threshold = parallel_threshold
self.learning_rate = learning_rate
self.strategy_weights = strategy_weights or {
'hypothesis': 0.3,
'evidence': 0.2,
'analysis': 0.2,
'synthesis': 0.15,
'evaluation': 0.15
}
# Initialize tree
self.root: Optional[TreeNode] = None
self.current_node: Optional[TreeNode] = None
# Performance tracking
self.performance_metrics = {
'tree_depth': 0,
'num_nodes': 0,
'branching_factor': 0.0,
'avg_confidence': 0.0,
'pruned_nodes': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply Tree of Thoughts reasoning to analyze the query.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning tree and confidence
"""
try:
# Initialize root node
self.root = TreeNode(
id="root",
type=NodeType.ROOT,
content=query,
confidence=1.0,
children=[],
parent=None,
metadata={"query": query},
depth=0
)
self.current_node = self.root
# Generate initial hypotheses
await self._generate_hypotheses(context)
# Gather evidence
await self._gather_evidence(context)
# Analyze evidence
await self._analyze_evidence(context)
# Synthesize findings
await self._synthesize_findings(context)
# Evaluate paths
await self._evaluate_paths(context)
# Find best path
best_path = self._find_best_path()
# Generate conclusion
conclusion = await self._generate_conclusion(best_path, context)
# Update performance metrics
self._update_metrics()
return StrategyResult(
strategy_type="tree_of_thoughts",
success=True,
answer=conclusion.content,
confidence=conclusion.confidence,
reasoning_trace=[{
"step": str(node.type.value),
"content": node.content,
"confidence": node.confidence,
"depth": node.depth,
"score": node.evaluation_score,
"metadata": node.metadata,
"timestamp": node.timestamp
} for node in self._traverse_tree()],
metadata={
"tree_depth": self.performance_metrics['tree_depth'],
"num_nodes": self.performance_metrics['num_nodes'],
"branching_factor": self.performance_metrics['branching_factor']
},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Tree of Thoughts reasoning error: {str(e)}")
return StrategyResult(
strategy_type="tree_of_thoughts",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
"step": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}],
metadata={"error": str(e)},
performance_metrics=self.performance_metrics
)
async def _generate_hypotheses(self, context: Dict[str, Any]) -> None:
"""Generate initial hypotheses as child nodes."""
hypotheses = self._extract_hypotheses(self.root.content, context)
for h_content in hypotheses:
node = TreeNode(
id=f"h{len(self.root.children)}",
type=NodeType.HYPOTHESIS,
content=h_content,
confidence=self._calculate_confidence(h_content, context),
children=[],
parent=self.root,
metadata={"type": "hypothesis"},
depth=1
)
self.root.children.append(node)
async def _gather_evidence(self, context: Dict[str, Any]) -> None:
"""Gather evidence for each hypothesis."""
for hypothesis in self.root.children:
evidence = self._find_evidence(hypothesis.content, context)
for e_content in evidence:
node = TreeNode(
id=f"{hypothesis.id}_e{len(hypothesis.children)}",
type=NodeType.EVIDENCE,
content=e_content,
confidence=self._calculate_confidence(e_content, context),
children=[],
parent=hypothesis,
metadata={"type": "evidence"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
async def _analyze_evidence(self, context: Dict[str, Any]) -> None:
"""Analyze gathered evidence."""
for hypothesis in self.root.children:
for evidence in hypothesis.children:
analysis = self._analyze_node(evidence, context)
node = TreeNode(
id=f"{evidence.id}_a",
type=NodeType.ANALYSIS,
content=analysis,
confidence=self._calculate_confidence(analysis, context),
children=[],
parent=evidence,
metadata={"type": "analysis"},
depth=evidence.depth + 1
)
evidence.children.append(node)
async def _synthesize_findings(self, context: Dict[str, Any]) -> None:
"""Synthesize findings from analysis."""
for hypothesis in self.root.children:
synthesis = self._synthesize_branch(hypothesis, context)
node = TreeNode(
id=f"{hypothesis.id}_s",
type=NodeType.SYNTHESIS,
content=synthesis,
confidence=self._calculate_confidence(synthesis, context),
children=[],
parent=hypothesis,
metadata={"type": "synthesis"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
async def _evaluate_paths(self, context: Dict[str, Any]) -> None:
"""Evaluate different reasoning paths."""
for hypothesis in self.root.children:
evaluation = self._evaluate_branch(hypothesis, context)
node = TreeNode(
id=f"{hypothesis.id}_e",
type=NodeType.EVALUATION,
content=evaluation,
confidence=self._calculate_confidence(evaluation, context),
children=[],
parent=hypothesis,
metadata={"type": "evaluation"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
def _find_best_path(self) -> List[TreeNode]:
"""Find the path with highest confidence."""
best_path = []
best_score = 0.0
for hypothesis in self.root.children:
path_score = self._calculate_path_score(hypothesis)
if path_score > best_score:
best_score = path_score
best_path = self._get_path(hypothesis)
return best_path
async def _generate_conclusion(
self,
path: List[TreeNode],
context: Dict[str, Any]
) -> TreeNode:
"""Generate final conclusion from best path."""
conclusion_content = self._synthesize_path(path, context)
node = TreeNode(
id="conclusion",
type=NodeType.CONCLUSION,
content=conclusion_content,
confidence=self._calculate_path_confidence(path),
children=[],
parent=self.root,
metadata={"type": "conclusion", "path_length": len(path)},
depth=max(n.depth for n in path) + 1
)
self.root.children.append(node)
return node
def _calculate_confidence(
self,
content: str,
context: Dict[str, Any]
) -> float:
"""Calculate confidence score for content."""
# Base confidence
confidence = 0.5
# Adjust based on content length
words = content.split()
if len(words) > 50:
confidence += 0.1
if len(words) > 100:
confidence += 0.1
# Adjust based on context match
if context.get('keywords'):
matches = sum(1 for k in context['keywords'] if k in content.lower())
confidence += min(0.3, matches * 0.1)
return min(1.0, confidence)
def _calculate_path_score(self, node: TreeNode) -> float:
"""Calculate score for a path in the tree."""
score = node.confidence
# Consider child nodes
if node.children:
child_scores = [self._calculate_path_score(c) for c in node.children]
score += max(child_scores) * 0.8 # Decay factor
return score
def _calculate_path_confidence(self, path: List[TreeNode]) -> float:
"""Calculate overall confidence for a path."""
if not path:
return 0.0
# Weight confidences by node type
weighted_sum = sum(
node.confidence * self.strategy_weights.get(node.type.value, 0.1)
for node in path
)
# Normalize by weights
total_weight = sum(
self.strategy_weights.get(node.type.value, 0.1)
for node in path
)
return weighted_sum / total_weight if total_weight > 0 else 0.0
def _get_path(self, node: TreeNode) -> List[TreeNode]:
"""Get path from root to node."""
path = []
current = node
while current:
path.append(current)
current = current.parent
return list(reversed(path))
def _traverse_tree(self) -> List[TreeNode]:
"""Traverse tree in pre-order."""
nodes = []
def traverse(node: TreeNode):
nodes.append(node)
for child in node.children:
traverse(child)
if self.root:
traverse(self.root)
return nodes
def _extract_hypotheses(
self,
content: str,
context: Dict[str, Any]
) -> List[str]:
"""Extract potential hypotheses from content."""
# Simple extraction based on keywords
# Could be enhanced with NLP
hypotheses = []
keywords = context.get('keywords', [])
sentences = content.split('.')
for sentence in sentences:
if any(k in sentence.lower() for k in keywords):
hypotheses.append(sentence.strip())
return hypotheses or ["Default hypothesis"]
def _find_evidence(
self,
hypothesis: str,
context: Dict[str, Any]
) -> List[str]:
"""Find evidence supporting hypothesis."""
evidence = []
if 'evidence' in context:
for e in context['evidence']:
if any(term in e.lower() for term in hypothesis.lower().split()):
evidence.append(e)
return evidence or ["No direct evidence found"]
def _analyze_node(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Analyze a node's content."""
return f"Analysis of {node.content}"
def _synthesize_branch(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Synthesize findings from a branch."""
return f"Synthesis of branch {node.id}"
def _evaluate_branch(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Evaluate a branch of the tree."""
return f"Evaluation of branch {node.id}"
def _synthesize_path(
self,
path: List[TreeNode],
context: Dict[str, Any]
) -> str:
"""Synthesize conclusion from path."""
return "Conclusion: " + " -> ".join(n.content for n in path)
def _update_metrics(self) -> None:
"""Update performance metrics."""
if self.root:
nodes = self._traverse_tree()
depths = [n.depth for n in nodes]
# Count nodes with children
internal_nodes = sum(1 for n in nodes if n.children)
self.performance_metrics.update({
'tree_depth': max(depths),
'num_nodes': len(nodes),
'branching_factor': len(nodes) / max(1, internal_nodes),
'avg_confidence': sum(n.confidence for n in nodes) / len(nodes),
'pruned_nodes': self.performance_metrics['pruned_nodes']
})