Spaces:
Runtime error
Runtime error
File size: 15,274 Bytes
1d75522 3feffc7 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f 1d75522 242446f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
"""Tree of Thoughts reasoning implementation with advanced tree exploration."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, AsyncGenerator, Generator
import json
from dataclasses import dataclass
from enum import Enum
import heapq
from collections import defaultdict
from datetime import datetime
from .base import ReasoningStrategy, StrategyResult
class NodeType(Enum):
"""Types of nodes in the thought tree."""
ROOT = "root"
HYPOTHESIS = "hypothesis"
EVIDENCE = "evidence"
ANALYSIS = "analysis"
SYNTHESIS = "synthesis"
EVALUATION = "evaluation"
CONCLUSION = "conclusion"
@dataclass
class TreeNode:
"""Represents a node in the thought tree."""
id: str
type: NodeType
content: str
confidence: float
children: List['TreeNode']
parent: Optional['TreeNode']
metadata: Dict[str, Any]
depth: int
evaluation_score: float = 0.0
timestamp: str = datetime.now().isoformat()
class TreeOfThoughtsStrategy(ReasoningStrategy):
"""
Advanced Tree of Thoughts reasoning implementation with:
- Beam search for path exploration
- Dynamic node evaluation
- Pruning strategies
- Path optimization
- Meta-learning from tree patterns
"""
def __init__(self,
min_confidence: float = 0.7,
parallel_threshold: int = 3,
learning_rate: float = 0.1,
strategy_weights: Optional[Dict[str, float]] = None):
"""Initialize Tree of Thoughts reasoning."""
super().__init__()
self.min_confidence = min_confidence
self.parallel_threshold = parallel_threshold
self.learning_rate = learning_rate
self.strategy_weights = strategy_weights or {
'hypothesis': 0.3,
'evidence': 0.2,
'analysis': 0.2,
'synthesis': 0.15,
'evaluation': 0.15
}
# Initialize tree
self.root: Optional[TreeNode] = None
self.current_node: Optional[TreeNode] = None
# Performance tracking
self.performance_metrics = {
'tree_depth': 0,
'num_nodes': 0,
'branching_factor': 0.0,
'avg_confidence': 0.0,
'pruned_nodes': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply Tree of Thoughts reasoning to analyze the query.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning tree and confidence
"""
try:
# Initialize root node
self.root = TreeNode(
id="root",
type=NodeType.ROOT,
content=query,
confidence=1.0,
children=[],
parent=None,
metadata={"query": query},
depth=0
)
self.current_node = self.root
# Generate initial hypotheses
await self._generate_hypotheses(context)
# Gather evidence
await self._gather_evidence(context)
# Analyze evidence
await self._analyze_evidence(context)
# Synthesize findings
await self._synthesize_findings(context)
# Evaluate paths
await self._evaluate_paths(context)
# Find best path
best_path = self._find_best_path()
# Generate conclusion
conclusion = await self._generate_conclusion(best_path, context)
# Update performance metrics
self._update_metrics()
return StrategyResult(
strategy_type="tree_of_thoughts",
success=True,
answer=conclusion.content,
confidence=conclusion.confidence,
reasoning_trace=[{
"step": str(node.type.value),
"content": node.content,
"confidence": node.confidence,
"depth": node.depth,
"score": node.evaluation_score,
"metadata": node.metadata,
"timestamp": node.timestamp
} for node in self._traverse_tree()],
metadata={
"tree_depth": self.performance_metrics['tree_depth'],
"num_nodes": self.performance_metrics['num_nodes'],
"branching_factor": self.performance_metrics['branching_factor']
},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Tree of Thoughts reasoning error: {str(e)}")
return StrategyResult(
strategy_type="tree_of_thoughts",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
"step": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}],
metadata={"error": str(e)},
performance_metrics=self.performance_metrics
)
async def _generate_hypotheses(self, context: Dict[str, Any]) -> None:
"""Generate initial hypotheses as child nodes."""
hypotheses = self._extract_hypotheses(self.root.content, context)
for h_content in hypotheses:
node = TreeNode(
id=f"h{len(self.root.children)}",
type=NodeType.HYPOTHESIS,
content=h_content,
confidence=self._calculate_confidence(h_content, context),
children=[],
parent=self.root,
metadata={"type": "hypothesis"},
depth=1
)
self.root.children.append(node)
async def _gather_evidence(self, context: Dict[str, Any]) -> None:
"""Gather evidence for each hypothesis."""
for hypothesis in self.root.children:
evidence = self._find_evidence(hypothesis.content, context)
for e_content in evidence:
node = TreeNode(
id=f"{hypothesis.id}_e{len(hypothesis.children)}",
type=NodeType.EVIDENCE,
content=e_content,
confidence=self._calculate_confidence(e_content, context),
children=[],
parent=hypothesis,
metadata={"type": "evidence"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
async def _analyze_evidence(self, context: Dict[str, Any]) -> None:
"""Analyze gathered evidence."""
for hypothesis in self.root.children:
for evidence in hypothesis.children:
analysis = self._analyze_node(evidence, context)
node = TreeNode(
id=f"{evidence.id}_a",
type=NodeType.ANALYSIS,
content=analysis,
confidence=self._calculate_confidence(analysis, context),
children=[],
parent=evidence,
metadata={"type": "analysis"},
depth=evidence.depth + 1
)
evidence.children.append(node)
async def _synthesize_findings(self, context: Dict[str, Any]) -> None:
"""Synthesize findings from analysis."""
for hypothesis in self.root.children:
synthesis = self._synthesize_branch(hypothesis, context)
node = TreeNode(
id=f"{hypothesis.id}_s",
type=NodeType.SYNTHESIS,
content=synthesis,
confidence=self._calculate_confidence(synthesis, context),
children=[],
parent=hypothesis,
metadata={"type": "synthesis"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
async def _evaluate_paths(self, context: Dict[str, Any]) -> None:
"""Evaluate different reasoning paths."""
for hypothesis in self.root.children:
evaluation = self._evaluate_branch(hypothesis, context)
node = TreeNode(
id=f"{hypothesis.id}_e",
type=NodeType.EVALUATION,
content=evaluation,
confidence=self._calculate_confidence(evaluation, context),
children=[],
parent=hypothesis,
metadata={"type": "evaluation"},
depth=hypothesis.depth + 1
)
hypothesis.children.append(node)
def _find_best_path(self) -> List[TreeNode]:
"""Find the path with highest confidence."""
best_path = []
best_score = 0.0
for hypothesis in self.root.children:
path_score = self._calculate_path_score(hypothesis)
if path_score > best_score:
best_score = path_score
best_path = self._get_path(hypothesis)
return best_path
async def _generate_conclusion(
self,
path: List[TreeNode],
context: Dict[str, Any]
) -> TreeNode:
"""Generate final conclusion from best path."""
conclusion_content = self._synthesize_path(path, context)
node = TreeNode(
id="conclusion",
type=NodeType.CONCLUSION,
content=conclusion_content,
confidence=self._calculate_path_confidence(path),
children=[],
parent=self.root,
metadata={"type": "conclusion", "path_length": len(path)},
depth=max(n.depth for n in path) + 1
)
self.root.children.append(node)
return node
def _calculate_confidence(
self,
content: str,
context: Dict[str, Any]
) -> float:
"""Calculate confidence score for content."""
# Base confidence
confidence = 0.5
# Adjust based on content length
words = content.split()
if len(words) > 50:
confidence += 0.1
if len(words) > 100:
confidence += 0.1
# Adjust based on context match
if context.get('keywords'):
matches = sum(1 for k in context['keywords'] if k in content.lower())
confidence += min(0.3, matches * 0.1)
return min(1.0, confidence)
def _calculate_path_score(self, node: TreeNode) -> float:
"""Calculate score for a path in the tree."""
score = node.confidence
# Consider child nodes
if node.children:
child_scores = [self._calculate_path_score(c) for c in node.children]
score += max(child_scores) * 0.8 # Decay factor
return score
def _calculate_path_confidence(self, path: List[TreeNode]) -> float:
"""Calculate overall confidence for a path."""
if not path:
return 0.0
# Weight confidences by node type
weighted_sum = sum(
node.confidence * self.strategy_weights.get(node.type.value, 0.1)
for node in path
)
# Normalize by weights
total_weight = sum(
self.strategy_weights.get(node.type.value, 0.1)
for node in path
)
return weighted_sum / total_weight if total_weight > 0 else 0.0
def _get_path(self, node: TreeNode) -> List[TreeNode]:
"""Get path from root to node."""
path = []
current = node
while current:
path.append(current)
current = current.parent
return list(reversed(path))
def _traverse_tree(self) -> List[TreeNode]:
"""Traverse tree in pre-order."""
nodes = []
def traverse(node: TreeNode):
nodes.append(node)
for child in node.children:
traverse(child)
if self.root:
traverse(self.root)
return nodes
def _extract_hypotheses(
self,
content: str,
context: Dict[str, Any]
) -> List[str]:
"""Extract potential hypotheses from content."""
# Simple extraction based on keywords
# Could be enhanced with NLP
hypotheses = []
keywords = context.get('keywords', [])
sentences = content.split('.')
for sentence in sentences:
if any(k in sentence.lower() for k in keywords):
hypotheses.append(sentence.strip())
return hypotheses or ["Default hypothesis"]
def _find_evidence(
self,
hypothesis: str,
context: Dict[str, Any]
) -> List[str]:
"""Find evidence supporting hypothesis."""
evidence = []
if 'evidence' in context:
for e in context['evidence']:
if any(term in e.lower() for term in hypothesis.lower().split()):
evidence.append(e)
return evidence or ["No direct evidence found"]
def _analyze_node(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Analyze a node's content."""
return f"Analysis of {node.content}"
def _synthesize_branch(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Synthesize findings from a branch."""
return f"Synthesis of branch {node.id}"
def _evaluate_branch(
self,
node: TreeNode,
context: Dict[str, Any]
) -> str:
"""Evaluate a branch of the tree."""
return f"Evaluation of branch {node.id}"
def _synthesize_path(
self,
path: List[TreeNode],
context: Dict[str, Any]
) -> str:
"""Synthesize conclusion from path."""
return "Conclusion: " + " -> ".join(n.content for n in path)
def _update_metrics(self) -> None:
"""Update performance metrics."""
if self.root:
nodes = self._traverse_tree()
depths = [n.depth for n in nodes]
# Count nodes with children
internal_nodes = sum(1 for n in nodes if n.children)
self.performance_metrics.update({
'tree_depth': max(depths),
'num_nodes': len(nodes),
'branching_factor': len(nodes) / max(1, internal_nodes),
'avg_confidence': sum(n.confidence for n in nodes) / len(nodes),
'pruned_nodes': self.performance_metrics['pruned_nodes']
})
|