File size: 15,274 Bytes
1d75522
 
 
3feffc7
1d75522
 
 
 
 
242446f
1d75522
242446f
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242446f
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242446f
 
1d75522
 
 
 
242446f
 
 
 
 
1d75522
 
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
242446f
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
 
1d75522
242446f
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
 
 
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
1d75522
242446f
 
 
 
 
1d75522
242446f
 
 
 
 
 
1d75522
242446f
 
 
1d75522
242446f
 
 
 
 
1d75522
242446f
 
1d75522
242446f
1d75522
242446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""Tree of Thoughts reasoning implementation with advanced tree exploration."""

import logging
from typing import Dict, Any, List, Optional, Set, Tuple, AsyncGenerator, Generator
import json
from dataclasses import dataclass
from enum import Enum
import heapq
from collections import defaultdict
from datetime import datetime

from .base import ReasoningStrategy, StrategyResult

class NodeType(Enum):
    """Types of nodes in the thought tree."""
    ROOT = "root"
    HYPOTHESIS = "hypothesis"
    EVIDENCE = "evidence"
    ANALYSIS = "analysis"
    SYNTHESIS = "synthesis"
    EVALUATION = "evaluation"
    CONCLUSION = "conclusion"

@dataclass
class TreeNode:
    """Represents a node in the thought tree."""
    id: str
    type: NodeType
    content: str
    confidence: float
    children: List['TreeNode']
    parent: Optional['TreeNode']
    metadata: Dict[str, Any]
    depth: int
    evaluation_score: float = 0.0
    timestamp: str = datetime.now().isoformat()

class TreeOfThoughtsStrategy(ReasoningStrategy):
    """
    Advanced Tree of Thoughts reasoning implementation with:
    - Beam search for path exploration
    - Dynamic node evaluation
    - Pruning strategies
    - Path optimization
    - Meta-learning from tree patterns
    """
    
    def __init__(self, 
                 min_confidence: float = 0.7,
                 parallel_threshold: int = 3,
                 learning_rate: float = 0.1,
                 strategy_weights: Optional[Dict[str, float]] = None):
        """Initialize Tree of Thoughts reasoning."""
        super().__init__()
        self.min_confidence = min_confidence
        self.parallel_threshold = parallel_threshold
        self.learning_rate = learning_rate
        self.strategy_weights = strategy_weights or {
            'hypothesis': 0.3,
            'evidence': 0.2,
            'analysis': 0.2,
            'synthesis': 0.15,
            'evaluation': 0.15
        }
        
        # Initialize tree
        self.root: Optional[TreeNode] = None
        self.current_node: Optional[TreeNode] = None
        
        # Performance tracking
        self.performance_metrics = {
            'tree_depth': 0,
            'num_nodes': 0,
            'branching_factor': 0.0,
            'avg_confidence': 0.0,
            'pruned_nodes': 0
        }
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply Tree of Thoughts reasoning to analyze the query.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing the reasoning tree and confidence
        """
        try:
            # Initialize root node
            self.root = TreeNode(
                id="root",
                type=NodeType.ROOT,
                content=query,
                confidence=1.0,
                children=[],
                parent=None,
                metadata={"query": query},
                depth=0
            )
            self.current_node = self.root
            
            # Generate initial hypotheses
            await self._generate_hypotheses(context)
            
            # Gather evidence
            await self._gather_evidence(context)
            
            # Analyze evidence
            await self._analyze_evidence(context)
            
            # Synthesize findings
            await self._synthesize_findings(context)
            
            # Evaluate paths
            await self._evaluate_paths(context)
            
            # Find best path
            best_path = self._find_best_path()
            
            # Generate conclusion
            conclusion = await self._generate_conclusion(best_path, context)
            
            # Update performance metrics
            self._update_metrics()
            
            return StrategyResult(
                strategy_type="tree_of_thoughts",
                success=True,
                answer=conclusion.content,
                confidence=conclusion.confidence,
                reasoning_trace=[{
                    "step": str(node.type.value),
                    "content": node.content,
                    "confidence": node.confidence,
                    "depth": node.depth,
                    "score": node.evaluation_score,
                    "metadata": node.metadata,
                    "timestamp": node.timestamp
                } for node in self._traverse_tree()],
                metadata={
                    "tree_depth": self.performance_metrics['tree_depth'],
                    "num_nodes": self.performance_metrics['num_nodes'],
                    "branching_factor": self.performance_metrics['branching_factor']
                },
                performance_metrics=self.performance_metrics
            )
            
        except Exception as e:
            logging.error(f"Tree of Thoughts reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="tree_of_thoughts",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    "step": "error",
                    "error": str(e),
                    "timestamp": datetime.now().isoformat()
                }],
                metadata={"error": str(e)},
                performance_metrics=self.performance_metrics
            )
    
    async def _generate_hypotheses(self, context: Dict[str, Any]) -> None:
        """Generate initial hypotheses as child nodes."""
        hypotheses = self._extract_hypotheses(self.root.content, context)
        
        for h_content in hypotheses:
            node = TreeNode(
                id=f"h{len(self.root.children)}",
                type=NodeType.HYPOTHESIS,
                content=h_content,
                confidence=self._calculate_confidence(h_content, context),
                children=[],
                parent=self.root,
                metadata={"type": "hypothesis"},
                depth=1
            )
            self.root.children.append(node)
    
    async def _gather_evidence(self, context: Dict[str, Any]) -> None:
        """Gather evidence for each hypothesis."""
        for hypothesis in self.root.children:
            evidence = self._find_evidence(hypothesis.content, context)
            
            for e_content in evidence:
                node = TreeNode(
                    id=f"{hypothesis.id}_e{len(hypothesis.children)}",
                    type=NodeType.EVIDENCE,
                    content=e_content,
                    confidence=self._calculate_confidence(e_content, context),
                    children=[],
                    parent=hypothesis,
                    metadata={"type": "evidence"},
                    depth=hypothesis.depth + 1
                )
                hypothesis.children.append(node)
    
    async def _analyze_evidence(self, context: Dict[str, Any]) -> None:
        """Analyze gathered evidence."""
        for hypothesis in self.root.children:
            for evidence in hypothesis.children:
                analysis = self._analyze_node(evidence, context)
                
                node = TreeNode(
                    id=f"{evidence.id}_a",
                    type=NodeType.ANALYSIS,
                    content=analysis,
                    confidence=self._calculate_confidence(analysis, context),
                    children=[],
                    parent=evidence,
                    metadata={"type": "analysis"},
                    depth=evidence.depth + 1
                )
                evidence.children.append(node)
    
    async def _synthesize_findings(self, context: Dict[str, Any]) -> None:
        """Synthesize findings from analysis."""
        for hypothesis in self.root.children:
            synthesis = self._synthesize_branch(hypothesis, context)
            
            node = TreeNode(
                id=f"{hypothesis.id}_s",
                type=NodeType.SYNTHESIS,
                content=synthesis,
                confidence=self._calculate_confidence(synthesis, context),
                children=[],
                parent=hypothesis,
                metadata={"type": "synthesis"},
                depth=hypothesis.depth + 1
            )
            hypothesis.children.append(node)
    
    async def _evaluate_paths(self, context: Dict[str, Any]) -> None:
        """Evaluate different reasoning paths."""
        for hypothesis in self.root.children:
            evaluation = self._evaluate_branch(hypothesis, context)
            
            node = TreeNode(
                id=f"{hypothesis.id}_e",
                type=NodeType.EVALUATION,
                content=evaluation,
                confidence=self._calculate_confidence(evaluation, context),
                children=[],
                parent=hypothesis,
                metadata={"type": "evaluation"},
                depth=hypothesis.depth + 1
            )
            hypothesis.children.append(node)
    
    def _find_best_path(self) -> List[TreeNode]:
        """Find the path with highest confidence."""
        best_path = []
        best_score = 0.0
        
        for hypothesis in self.root.children:
            path_score = self._calculate_path_score(hypothesis)
            if path_score > best_score:
                best_score = path_score
                best_path = self._get_path(hypothesis)
        
        return best_path
    
    async def _generate_conclusion(
        self,
        path: List[TreeNode],
        context: Dict[str, Any]
    ) -> TreeNode:
        """Generate final conclusion from best path."""
        conclusion_content = self._synthesize_path(path, context)
        
        node = TreeNode(
            id="conclusion",
            type=NodeType.CONCLUSION,
            content=conclusion_content,
            confidence=self._calculate_path_confidence(path),
            children=[],
            parent=self.root,
            metadata={"type": "conclusion", "path_length": len(path)},
            depth=max(n.depth for n in path) + 1
        )
        self.root.children.append(node)
        
        return node
    
    def _calculate_confidence(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> float:
        """Calculate confidence score for content."""
        # Base confidence
        confidence = 0.5
        
        # Adjust based on content length
        words = content.split()
        if len(words) > 50:
            confidence += 0.1
        if len(words) > 100:
            confidence += 0.1
        
        # Adjust based on context match
        if context.get('keywords'):
            matches = sum(1 for k in context['keywords'] if k in content.lower())
            confidence += min(0.3, matches * 0.1)
        
        return min(1.0, confidence)
    
    def _calculate_path_score(self, node: TreeNode) -> float:
        """Calculate score for a path in the tree."""
        score = node.confidence
        
        # Consider child nodes
        if node.children:
            child_scores = [self._calculate_path_score(c) for c in node.children]
            score += max(child_scores) * 0.8  # Decay factor
        
        return score
    
    def _calculate_path_confidence(self, path: List[TreeNode]) -> float:
        """Calculate overall confidence for a path."""
        if not path:
            return 0.0
        
        # Weight confidences by node type
        weighted_sum = sum(
            node.confidence * self.strategy_weights.get(node.type.value, 0.1)
            for node in path
        )
        
        # Normalize by weights
        total_weight = sum(
            self.strategy_weights.get(node.type.value, 0.1)
            for node in path
        )
        
        return weighted_sum / total_weight if total_weight > 0 else 0.0
    
    def _get_path(self, node: TreeNode) -> List[TreeNode]:
        """Get path from root to node."""
        path = []
        current = node
        
        while current:
            path.append(current)
            current = current.parent
        
        return list(reversed(path))
    
    def _traverse_tree(self) -> List[TreeNode]:
        """Traverse tree in pre-order."""
        nodes = []
        
        def traverse(node: TreeNode):
            nodes.append(node)
            for child in node.children:
                traverse(child)
        
        if self.root:
            traverse(self.root)
        
        return nodes
    
    def _extract_hypotheses(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> List[str]:
        """Extract potential hypotheses from content."""
        # Simple extraction based on keywords
        # Could be enhanced with NLP
        hypotheses = []
        
        keywords = context.get('keywords', [])
        sentences = content.split('.')
        
        for sentence in sentences:
            if any(k in sentence.lower() for k in keywords):
                hypotheses.append(sentence.strip())
        
        return hypotheses or ["Default hypothesis"]
    
    def _find_evidence(
        self,
        hypothesis: str,
        context: Dict[str, Any]
    ) -> List[str]:
        """Find evidence supporting hypothesis."""
        evidence = []
        
        if 'evidence' in context:
            for e in context['evidence']:
                if any(term in e.lower() for term in hypothesis.lower().split()):
                    evidence.append(e)
        
        return evidence or ["No direct evidence found"]
    
    def _analyze_node(
        self,
        node: TreeNode,
        context: Dict[str, Any]
    ) -> str:
        """Analyze a node's content."""
        return f"Analysis of {node.content}"
    
    def _synthesize_branch(
        self,
        node: TreeNode,
        context: Dict[str, Any]
    ) -> str:
        """Synthesize findings from a branch."""
        return f"Synthesis of branch {node.id}"
    
    def _evaluate_branch(
        self,
        node: TreeNode,
        context: Dict[str, Any]
    ) -> str:
        """Evaluate a branch of the tree."""
        return f"Evaluation of branch {node.id}"
    
    def _synthesize_path(
        self,
        path: List[TreeNode],
        context: Dict[str, Any]
    ) -> str:
        """Synthesize conclusion from path."""
        return "Conclusion: " + " -> ".join(n.content for n in path)
    
    def _update_metrics(self) -> None:
        """Update performance metrics."""
        if self.root:
            nodes = self._traverse_tree()
            depths = [n.depth for n in nodes]
            
            # Count nodes with children
            internal_nodes = sum(1 for n in nodes if n.children)
            
            self.performance_metrics.update({
                'tree_depth': max(depths),
                'num_nodes': len(nodes),
                'branching_factor': len(nodes) / max(1, internal_nodes),
                'avg_confidence': sum(n.confidence for n in nodes) / len(nodes),
                'pruned_nodes': self.performance_metrics['pruned_nodes']
            })