Cascade Bot
feat(quantum): update QuantumStrategy with improved implementation
a084fbc
"""Quantum-inspired reasoning implementations."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy, StrategyResult
class QuantumOperationType(Enum):
"""Types of quantum operations."""
HADAMARD = "hadamard"
CNOT = "cnot"
PHASE = "phase"
MEASURE = "measure"
ENTANGLE = "entangle"
@dataclass
class QuantumState:
"""Quantum state with superposition and entanglement."""
name: str
amplitude: complex
phase: float
entangled_states: List[str] = field(default_factory=list)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class QuantumOperation:
"""Quantum operation applied to states."""
type: QuantumOperationType
target_states: List[str]
parameters: Dict[str, Any]
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class QuantumMeasurement:
"""Result of quantum measurement."""
state: str
probability: float
outcome: Any
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
class QuantumStrategy(ReasoningStrategy):
"""
Advanced quantum reasoning that:
1. Creates quantum states
2. Applies quantum operations
3. Measures outcomes
4. Handles superposition
5. Models entanglement
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize quantum reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
# Configure quantum parameters
self.num_qubits = self.config.get('num_qubits', 3)
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
# Performance metrics
self.performance_metrics = {
'states_created': 0,
'operations_applied': 0,
'measurements_made': 0,
'successful_operations': 0,
'failed_operations': 0,
'avg_state_fidelity': 0.0,
'operation_distribution': defaultdict(int),
'measurement_distribution': defaultdict(float),
'total_qubits_used': 0,
'total_entanglements': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply quantum reasoning to analyze the query.
Args:
query: The query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning output and metadata
"""
try:
# Initialize quantum states
states = await self._initialize_states(query, context)
self.performance_metrics['states_created'] = len(states)
self.performance_metrics['total_qubits_used'] = sum(
len(s.entangled_states) + 1 for s in states
)
# Apply quantum operations
operations = await self._apply_operations(states, context)
self.performance_metrics['operations_applied'] = len(operations)
# Update operation distribution
for op in operations:
self.performance_metrics['operation_distribution'][op.type.value] += 1
# Perform measurements
measurements = await self._measure_states(states, context)
self.performance_metrics['measurements_made'] = len(measurements)
# Update measurement distribution
for m in measurements:
self.performance_metrics['measurement_distribution'][m.state] = m.probability
# Analyze results
result = await self._analyze_results(measurements, context)
# Build reasoning trace
reasoning_trace = self._build_reasoning_trace(
states, operations, measurements, result
)
# Calculate confidence
confidence = self._calculate_confidence(measurements)
if confidence >= self.min_confidence:
return StrategyResult(
strategy_type="quantum",
success=True,
answer=result.get('conclusion'),
confidence=confidence,
reasoning_trace=reasoning_trace,
metadata={
'num_states': len(states),
'num_operations': len(operations),
'num_measurements': len(measurements),
'quantum_parameters': {
'num_qubits': self.num_qubits,
'decoherence_rate': self.decoherence_rate
}
},
performance_metrics=self.performance_metrics
)
return StrategyResult(
strategy_type="quantum",
success=False,
answer=None,
confidence=confidence,
reasoning_trace=reasoning_trace,
metadata={'error': 'Insufficient confidence in results'},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Quantum reasoning error: {str(e)}")
return StrategyResult(
strategy_type="quantum",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': str(e),
'timestamp': datetime.now().isoformat()
}],
metadata={'error': str(e)},
performance_metrics=self.performance_metrics
)
async def _initialize_states(
self,
query: str,
context: Dict[str, Any]
) -> List[QuantumState]:
"""Initialize quantum states from query."""
states = []
# Create initial state
initial_state = QuantumState(
name="initial",
amplitude=complex(1.0, 0.0),
phase=0.0
)
states.append(initial_state)
# Create superposition states
for i in range(self.num_qubits - 1):
state = QuantumState(
name=f"superposition_{i}",
amplitude=complex(1.0 / np.sqrt(2), 0.0),
phase=np.pi / 2,
entangled_states=[initial_state.name]
)
states.append(state)
self.performance_metrics['total_entanglements'] += 1
return states
async def _apply_operations(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> List[QuantumOperation]:
"""Apply quantum operations to states."""
operations = []
for state in states:
# Apply Hadamard gate
operations.append(QuantumOperation(
type=QuantumOperationType.HADAMARD,
target_states=[state.name],
parameters={'angle': np.pi / 2}
))
# Apply CNOT if entangled
if state.entangled_states:
operations.append(QuantumOperation(
type=QuantumOperationType.CNOT,
target_states=[state.name] + state.entangled_states,
parameters={}
))
# Apply phase rotation
operations.append(QuantumOperation(
type=QuantumOperationType.PHASE,
target_states=[state.name],
parameters={'phase': state.phase}
))
# Track success/failure
success = np.random.random() > self.decoherence_rate
if success:
self.performance_metrics['successful_operations'] += 1
else:
self.performance_metrics['failed_operations'] += 1
return operations
async def _measure_states(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> List[QuantumMeasurement]:
"""Measure quantum states."""
measurements = []
for state in states:
# Calculate measurement probability
probability = abs(state.amplitude) ** 2
# Apply measurement threshold
if probability > self.measurement_threshold:
measurements.append(QuantumMeasurement(
state=state.name,
probability=probability,
outcome=1 if probability > 0.5 else 0
))
return measurements
async def _analyze_results(
self,
measurements: List[QuantumMeasurement],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Analyze measurement results."""
if not measurements:
return {'conclusion': None, 'confidence': 0.0}
# Calculate weighted outcome
total_probability = sum(m.probability for m in measurements)
weighted_outcome = sum(
m.probability * m.outcome for m in measurements
) / total_probability if total_probability > 0 else 0
return {
'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}",
'confidence': total_probability / len(measurements)
}
def _calculate_confidence(
self,
measurements: List[QuantumMeasurement]
) -> float:
"""Calculate overall confidence score."""
if not measurements:
return 0.0
# Base confidence from measurements
confidence = sum(m.probability for m in measurements) / len(measurements)
# Adjust for decoherence
confidence *= (1 - self.decoherence_rate)
# Adjust for operation success rate
total_ops = (
self.performance_metrics['successful_operations'] +
self.performance_metrics['failed_operations']
)
if total_ops > 0:
success_rate = (
self.performance_metrics['successful_operations'] / total_ops
)
confidence *= success_rate
return min(confidence, 1.0)
def _build_reasoning_trace(
self,
states: List[QuantumState],
operations: List[QuantumOperation],
measurements: List[QuantumMeasurement],
result: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Build the reasoning trace for quantum processing."""
trace = []
# State initialization step
trace.append({
'step': 'state_initialization',
'states': [
{
'name': s.name,
'amplitude': abs(s.amplitude),
'phase': s.phase,
'entangled': len(s.entangled_states)
}
for s in states
],
'timestamp': datetime.now().isoformat()
})
# Operation application step
trace.append({
'step': 'operation_application',
'operations': [
{
'type': o.type.value,
'targets': o.target_states,
'parameters': o.parameters
}
for o in operations
],
'timestamp': datetime.now().isoformat()
})
# Measurement step
trace.append({
'step': 'measurement',
'measurements': [
{
'state': m.state,
'probability': m.probability,
'outcome': m.outcome
}
for m in measurements
],
'timestamp': datetime.now().isoformat()
})
# Result analysis step
trace.append({
'step': 'result_analysis',
'result': result,
'timestamp': datetime.now().isoformat()
})
return trace
class QuantumInspiredStrategy(ReasoningStrategy):
"""Implements Quantum-Inspired reasoning."""
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Create a clean context for serialization
clean_context = {k: v for k, v in context.items() if k != "groq_api"}
prompt = f"""
You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
Problem Type:
Query: {query}
Context: {json.dumps(clean_context)}
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
PROBLEM ANALYSIS:
- [First key aspect or complexity factor]
- [Second key aspect or complexity factor]
- [Third key aspect or complexity factor]
SOLUTION PATHS:
- Path 1: [Specific solution approach]
- Path 2: [Alternative solution approach]
- Path 3: [Another alternative approach]
META INSIGHTS:
- Learning 1: [Key insight about the problem space]
- Learning 2: [Key insight about solution approaches]
- Learning 3: [Key insight about trade-offs]
CONCLUSION:
[Final synthesized solution incorporating meta-learnings]
"""
response = await context["groq_api"].predict(prompt)
if not response["success"]:
return response
# Parse response into components
lines = response["answer"].split("\n")
problem_analysis = []
solution_paths = []
meta_insights = []
conclusion = ""
section = None
for line in lines:
line = line.strip()
if not line:
continue
if "PROBLEM ANALYSIS:" in line:
section = "analysis"
elif "SOLUTION PATHS:" in line:
section = "paths"
elif "META INSIGHTS:" in line:
section = "insights"
elif "CONCLUSION:" in line:
section = "conclusion"
elif line.startswith("-"):
content = line.lstrip("- ").strip()
if section == "analysis":
problem_analysis.append(content)
elif section == "paths":
solution_paths.append(content)
elif section == "insights":
meta_insights.append(content)
elif section == "conclusion":
conclusion += line + " "
return {
"success": True,
"problem_analysis": problem_analysis,
"solution_paths": solution_paths,
"meta_insights": meta_insights,
"conclusion": conclusion.strip(),
# Add standard fields for compatibility
"reasoning_path": problem_analysis + solution_paths + meta_insights,
"conclusion": conclusion.strip()
}
except Exception as e:
return {"success": False, "error": str(e)}