File size: 16,241 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
a084fbc
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
1d75522
a084fbc
1d75522
 
a084fbc
1d75522
 
 
a084fbc
1d75522
 
 
 
a084fbc
 
 
 
1d75522
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
1d75522
a084fbc
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
a084fbc
1d75522
 
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
a084fbc
1d75522
a084fbc
1d75522
 
a084fbc
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
1d75522
 
 
 
 
a084fbc
1d75522
a084fbc
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
a084fbc
1d75522
a084fbc
1d75522
 
a084fbc
 
 
1d75522
a084fbc
 
 
 
 
1d75522
 
a084fbc
 
1d75522
 
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
1d75522
a084fbc
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
1d75522
a084fbc
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
1d75522
a084fbc
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""Quantum-inspired reasoning implementations."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy, StrategyResult

class QuantumOperationType(Enum):
    """Types of quantum operations."""
    HADAMARD = "hadamard"
    CNOT = "cnot"
    PHASE = "phase"
    MEASURE = "measure"
    ENTANGLE = "entangle"

@dataclass
class QuantumState:
    """Quantum state with superposition and entanglement."""
    name: str
    amplitude: complex
    phase: float
    entangled_states: List[str] = field(default_factory=list)
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

@dataclass
class QuantumOperation:
    """Quantum operation applied to states."""
    type: QuantumOperationType
    target_states: List[str]
    parameters: Dict[str, Any]
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

@dataclass
class QuantumMeasurement:
    """Result of quantum measurement."""
    state: str
    probability: float
    outcome: Any
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

class QuantumStrategy(ReasoningStrategy):
    """
    Advanced quantum reasoning that:
    1. Creates quantum states
    2. Applies quantum operations
    3. Measures outcomes
    4. Handles superposition
    5. Models entanglement
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize quantum reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        
        # Configure quantum parameters
        self.num_qubits = self.config.get('num_qubits', 3)
        self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
        self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
        
        # Performance metrics
        self.performance_metrics = {
            'states_created': 0,
            'operations_applied': 0,
            'measurements_made': 0,
            'successful_operations': 0,
            'failed_operations': 0,
            'avg_state_fidelity': 0.0,
            'operation_distribution': defaultdict(int),
            'measurement_distribution': defaultdict(float),
            'total_qubits_used': 0,
            'total_entanglements': 0
        }
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply quantum reasoning to analyze the query.
        
        Args:
            query: The query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing the reasoning output and metadata
        """
        try:
            # Initialize quantum states
            states = await self._initialize_states(query, context)
            self.performance_metrics['states_created'] = len(states)
            self.performance_metrics['total_qubits_used'] = sum(
                len(s.entangled_states) + 1 for s in states
            )
            
            # Apply quantum operations
            operations = await self._apply_operations(states, context)
            self.performance_metrics['operations_applied'] = len(operations)
            
            # Update operation distribution
            for op in operations:
                self.performance_metrics['operation_distribution'][op.type.value] += 1
                
            # Perform measurements
            measurements = await self._measure_states(states, context)
            self.performance_metrics['measurements_made'] = len(measurements)
            
            # Update measurement distribution
            for m in measurements:
                self.performance_metrics['measurement_distribution'][m.state] = m.probability
            
            # Analyze results
            result = await self._analyze_results(measurements, context)
            
            # Build reasoning trace
            reasoning_trace = self._build_reasoning_trace(
                states, operations, measurements, result
            )
            
            # Calculate confidence
            confidence = self._calculate_confidence(measurements)
            
            if confidence >= self.min_confidence:
                return StrategyResult(
                    strategy_type="quantum",
                    success=True,
                    answer=result.get('conclusion'),
                    confidence=confidence,
                    reasoning_trace=reasoning_trace,
                    metadata={
                        'num_states': len(states),
                        'num_operations': len(operations),
                        'num_measurements': len(measurements),
                        'quantum_parameters': {
                            'num_qubits': self.num_qubits,
                            'decoherence_rate': self.decoherence_rate
                        }
                    },
                    performance_metrics=self.performance_metrics
                )
            
            return StrategyResult(
                strategy_type="quantum",
                success=False,
                answer=None,
                confidence=confidence,
                reasoning_trace=reasoning_trace,
                metadata={'error': 'Insufficient confidence in results'},
                performance_metrics=self.performance_metrics
            )
            
        except Exception as e:
            logging.error(f"Quantum reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="quantum",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    'step': 'error',
                    'error': str(e),
                    'timestamp': datetime.now().isoformat()
                }],
                metadata={'error': str(e)},
                performance_metrics=self.performance_metrics
            )
    
    async def _initialize_states(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[QuantumState]:
        """Initialize quantum states from query."""
        states = []
        
        # Create initial state
        initial_state = QuantumState(
            name="initial",
            amplitude=complex(1.0, 0.0),
            phase=0.0
        )
        states.append(initial_state)
        
        # Create superposition states
        for i in range(self.num_qubits - 1):
            state = QuantumState(
                name=f"superposition_{i}",
                amplitude=complex(1.0 / np.sqrt(2), 0.0),
                phase=np.pi / 2,
                entangled_states=[initial_state.name]
            )
            states.append(state)
            self.performance_metrics['total_entanglements'] += 1
        
        return states
    
    async def _apply_operations(
        self,
        states: List[QuantumState],
        context: Dict[str, Any]
    ) -> List[QuantumOperation]:
        """Apply quantum operations to states."""
        operations = []
        
        for state in states:
            # Apply Hadamard gate
            operations.append(QuantumOperation(
                type=QuantumOperationType.HADAMARD,
                target_states=[state.name],
                parameters={'angle': np.pi / 2}
            ))
            
            # Apply CNOT if entangled
            if state.entangled_states:
                operations.append(QuantumOperation(
                    type=QuantumOperationType.CNOT,
                    target_states=[state.name] + state.entangled_states,
                    parameters={}
                ))
            
            # Apply phase rotation
            operations.append(QuantumOperation(
                type=QuantumOperationType.PHASE,
                target_states=[state.name],
                parameters={'phase': state.phase}
            ))
            
            # Track success/failure
            success = np.random.random() > self.decoherence_rate
            if success:
                self.performance_metrics['successful_operations'] += 1
            else:
                self.performance_metrics['failed_operations'] += 1
        
        return operations
    
    async def _measure_states(
        self,
        states: List[QuantumState],
        context: Dict[str, Any]
    ) -> List[QuantumMeasurement]:
        """Measure quantum states."""
        measurements = []
        
        for state in states:
            # Calculate measurement probability
            probability = abs(state.amplitude) ** 2
            
            # Apply measurement threshold
            if probability > self.measurement_threshold:
                measurements.append(QuantumMeasurement(
                    state=state.name,
                    probability=probability,
                    outcome=1 if probability > 0.5 else 0
                ))
        
        return measurements
    
    async def _analyze_results(
        self,
        measurements: List[QuantumMeasurement],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Analyze measurement results."""
        if not measurements:
            return {'conclusion': None, 'confidence': 0.0}
        
        # Calculate weighted outcome
        total_probability = sum(m.probability for m in measurements)
        weighted_outcome = sum(
            m.probability * m.outcome for m in measurements
        ) / total_probability if total_probability > 0 else 0
        
        return {
            'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}",
            'confidence': total_probability / len(measurements)
        }
    
    def _calculate_confidence(
        self,
        measurements: List[QuantumMeasurement]
    ) -> float:
        """Calculate overall confidence score."""
        if not measurements:
            return 0.0
        
        # Base confidence from measurements
        confidence = sum(m.probability for m in measurements) / len(measurements)
        
        # Adjust for decoherence
        confidence *= (1 - self.decoherence_rate)
        
        # Adjust for operation success rate
        total_ops = (
            self.performance_metrics['successful_operations'] +
            self.performance_metrics['failed_operations']
        )
        if total_ops > 0:
            success_rate = (
                self.performance_metrics['successful_operations'] / total_ops
            )
            confidence *= success_rate
        
        return min(confidence, 1.0)
    
    def _build_reasoning_trace(
        self,
        states: List[QuantumState],
        operations: List[QuantumOperation],
        measurements: List[QuantumMeasurement],
        result: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        """Build the reasoning trace for quantum processing."""
        trace = []
        
        # State initialization step
        trace.append({
            'step': 'state_initialization',
            'states': [
                {
                    'name': s.name,
                    'amplitude': abs(s.amplitude),
                    'phase': s.phase,
                    'entangled': len(s.entangled_states)
                }
                for s in states
            ],
            'timestamp': datetime.now().isoformat()
        })
        
        # Operation application step
        trace.append({
            'step': 'operation_application',
            'operations': [
                {
                    'type': o.type.value,
                    'targets': o.target_states,
                    'parameters': o.parameters
                }
                for o in operations
            ],
            'timestamp': datetime.now().isoformat()
        })
        
        # Measurement step
        trace.append({
            'step': 'measurement',
            'measurements': [
                {
                    'state': m.state,
                    'probability': m.probability,
                    'outcome': m.outcome
                }
                for m in measurements
            ],
            'timestamp': datetime.now().isoformat()
        })
        
        # Result analysis step
        trace.append({
            'step': 'result_analysis',
            'result': result,
            'timestamp': datetime.now().isoformat()
        })
        
        return trace


class QuantumInspiredStrategy(ReasoningStrategy):
    """Implements Quantum-Inspired reasoning."""
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Create a clean context for serialization
            clean_context = {k: v for k, v in context.items() if k != "groq_api"}
            
            prompt = f"""
            You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
            
            Problem Type: 
            Query: {query}
            Context: {json.dumps(clean_context)}
            
            Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:

            PROBLEM ANALYSIS:
            - [First key aspect or complexity factor]
            - [Second key aspect or complexity factor]
            - [Third key aspect or complexity factor]

            SOLUTION PATHS:
            - Path 1: [Specific solution approach]
            - Path 2: [Alternative solution approach]
            - Path 3: [Another alternative approach]

            META INSIGHTS:
            - Learning 1: [Key insight about the problem space]
            - Learning 2: [Key insight about solution approaches]
            - Learning 3: [Key insight about trade-offs]

            CONCLUSION:
            [Final synthesized solution incorporating meta-learnings]
            """
            
            response = await context["groq_api"].predict(prompt)
            
            if not response["success"]:
                return response
                
            # Parse response into components
            lines = response["answer"].split("\n")
            problem_analysis = []
            solution_paths = []
            meta_insights = []
            conclusion = ""
            
            section = None
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                    
                if "PROBLEM ANALYSIS:" in line:
                    section = "analysis"
                elif "SOLUTION PATHS:" in line:
                    section = "paths"
                elif "META INSIGHTS:" in line:
                    section = "insights"
                elif "CONCLUSION:" in line:
                    section = "conclusion"
                elif line.startswith("-"):
                    content = line.lstrip("- ").strip()
                    if section == "analysis":
                        problem_analysis.append(content)
                    elif section == "paths":
                        solution_paths.append(content)
                    elif section == "insights":
                        meta_insights.append(content)
                elif section == "conclusion":
                    conclusion += line + " "
            
            return {
                "success": True,
                "problem_analysis": problem_analysis,
                "solution_paths": solution_paths,
                "meta_insights": meta_insights,
                "conclusion": conclusion.strip(),
                # Add standard fields for compatibility
                "reasoning_path": problem_analysis + solution_paths + meta_insights,
                "conclusion": conclusion.strip()
            }
            
        except Exception as e:
            return {"success": False, "error": str(e)}