Spaces:
Runtime error
Runtime error
File size: 16,241 Bytes
1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 a084fbc 1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
"""Quantum-inspired reasoning implementations."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy, StrategyResult
class QuantumOperationType(Enum):
"""Types of quantum operations."""
HADAMARD = "hadamard"
CNOT = "cnot"
PHASE = "phase"
MEASURE = "measure"
ENTANGLE = "entangle"
@dataclass
class QuantumState:
"""Quantum state with superposition and entanglement."""
name: str
amplitude: complex
phase: float
entangled_states: List[str] = field(default_factory=list)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class QuantumOperation:
"""Quantum operation applied to states."""
type: QuantumOperationType
target_states: List[str]
parameters: Dict[str, Any]
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class QuantumMeasurement:
"""Result of quantum measurement."""
state: str
probability: float
outcome: Any
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
class QuantumStrategy(ReasoningStrategy):
"""
Advanced quantum reasoning that:
1. Creates quantum states
2. Applies quantum operations
3. Measures outcomes
4. Handles superposition
5. Models entanglement
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize quantum reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
# Configure quantum parameters
self.num_qubits = self.config.get('num_qubits', 3)
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
# Performance metrics
self.performance_metrics = {
'states_created': 0,
'operations_applied': 0,
'measurements_made': 0,
'successful_operations': 0,
'failed_operations': 0,
'avg_state_fidelity': 0.0,
'operation_distribution': defaultdict(int),
'measurement_distribution': defaultdict(float),
'total_qubits_used': 0,
'total_entanglements': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply quantum reasoning to analyze the query.
Args:
query: The query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning output and metadata
"""
try:
# Initialize quantum states
states = await self._initialize_states(query, context)
self.performance_metrics['states_created'] = len(states)
self.performance_metrics['total_qubits_used'] = sum(
len(s.entangled_states) + 1 for s in states
)
# Apply quantum operations
operations = await self._apply_operations(states, context)
self.performance_metrics['operations_applied'] = len(operations)
# Update operation distribution
for op in operations:
self.performance_metrics['operation_distribution'][op.type.value] += 1
# Perform measurements
measurements = await self._measure_states(states, context)
self.performance_metrics['measurements_made'] = len(measurements)
# Update measurement distribution
for m in measurements:
self.performance_metrics['measurement_distribution'][m.state] = m.probability
# Analyze results
result = await self._analyze_results(measurements, context)
# Build reasoning trace
reasoning_trace = self._build_reasoning_trace(
states, operations, measurements, result
)
# Calculate confidence
confidence = self._calculate_confidence(measurements)
if confidence >= self.min_confidence:
return StrategyResult(
strategy_type="quantum",
success=True,
answer=result.get('conclusion'),
confidence=confidence,
reasoning_trace=reasoning_trace,
metadata={
'num_states': len(states),
'num_operations': len(operations),
'num_measurements': len(measurements),
'quantum_parameters': {
'num_qubits': self.num_qubits,
'decoherence_rate': self.decoherence_rate
}
},
performance_metrics=self.performance_metrics
)
return StrategyResult(
strategy_type="quantum",
success=False,
answer=None,
confidence=confidence,
reasoning_trace=reasoning_trace,
metadata={'error': 'Insufficient confidence in results'},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Quantum reasoning error: {str(e)}")
return StrategyResult(
strategy_type="quantum",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': str(e),
'timestamp': datetime.now().isoformat()
}],
metadata={'error': str(e)},
performance_metrics=self.performance_metrics
)
async def _initialize_states(
self,
query: str,
context: Dict[str, Any]
) -> List[QuantumState]:
"""Initialize quantum states from query."""
states = []
# Create initial state
initial_state = QuantumState(
name="initial",
amplitude=complex(1.0, 0.0),
phase=0.0
)
states.append(initial_state)
# Create superposition states
for i in range(self.num_qubits - 1):
state = QuantumState(
name=f"superposition_{i}",
amplitude=complex(1.0 / np.sqrt(2), 0.0),
phase=np.pi / 2,
entangled_states=[initial_state.name]
)
states.append(state)
self.performance_metrics['total_entanglements'] += 1
return states
async def _apply_operations(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> List[QuantumOperation]:
"""Apply quantum operations to states."""
operations = []
for state in states:
# Apply Hadamard gate
operations.append(QuantumOperation(
type=QuantumOperationType.HADAMARD,
target_states=[state.name],
parameters={'angle': np.pi / 2}
))
# Apply CNOT if entangled
if state.entangled_states:
operations.append(QuantumOperation(
type=QuantumOperationType.CNOT,
target_states=[state.name] + state.entangled_states,
parameters={}
))
# Apply phase rotation
operations.append(QuantumOperation(
type=QuantumOperationType.PHASE,
target_states=[state.name],
parameters={'phase': state.phase}
))
# Track success/failure
success = np.random.random() > self.decoherence_rate
if success:
self.performance_metrics['successful_operations'] += 1
else:
self.performance_metrics['failed_operations'] += 1
return operations
async def _measure_states(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> List[QuantumMeasurement]:
"""Measure quantum states."""
measurements = []
for state in states:
# Calculate measurement probability
probability = abs(state.amplitude) ** 2
# Apply measurement threshold
if probability > self.measurement_threshold:
measurements.append(QuantumMeasurement(
state=state.name,
probability=probability,
outcome=1 if probability > 0.5 else 0
))
return measurements
async def _analyze_results(
self,
measurements: List[QuantumMeasurement],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Analyze measurement results."""
if not measurements:
return {'conclusion': None, 'confidence': 0.0}
# Calculate weighted outcome
total_probability = sum(m.probability for m in measurements)
weighted_outcome = sum(
m.probability * m.outcome for m in measurements
) / total_probability if total_probability > 0 else 0
return {
'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}",
'confidence': total_probability / len(measurements)
}
def _calculate_confidence(
self,
measurements: List[QuantumMeasurement]
) -> float:
"""Calculate overall confidence score."""
if not measurements:
return 0.0
# Base confidence from measurements
confidence = sum(m.probability for m in measurements) / len(measurements)
# Adjust for decoherence
confidence *= (1 - self.decoherence_rate)
# Adjust for operation success rate
total_ops = (
self.performance_metrics['successful_operations'] +
self.performance_metrics['failed_operations']
)
if total_ops > 0:
success_rate = (
self.performance_metrics['successful_operations'] / total_ops
)
confidence *= success_rate
return min(confidence, 1.0)
def _build_reasoning_trace(
self,
states: List[QuantumState],
operations: List[QuantumOperation],
measurements: List[QuantumMeasurement],
result: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Build the reasoning trace for quantum processing."""
trace = []
# State initialization step
trace.append({
'step': 'state_initialization',
'states': [
{
'name': s.name,
'amplitude': abs(s.amplitude),
'phase': s.phase,
'entangled': len(s.entangled_states)
}
for s in states
],
'timestamp': datetime.now().isoformat()
})
# Operation application step
trace.append({
'step': 'operation_application',
'operations': [
{
'type': o.type.value,
'targets': o.target_states,
'parameters': o.parameters
}
for o in operations
],
'timestamp': datetime.now().isoformat()
})
# Measurement step
trace.append({
'step': 'measurement',
'measurements': [
{
'state': m.state,
'probability': m.probability,
'outcome': m.outcome
}
for m in measurements
],
'timestamp': datetime.now().isoformat()
})
# Result analysis step
trace.append({
'step': 'result_analysis',
'result': result,
'timestamp': datetime.now().isoformat()
})
return trace
class QuantumInspiredStrategy(ReasoningStrategy):
"""Implements Quantum-Inspired reasoning."""
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Create a clean context for serialization
clean_context = {k: v for k, v in context.items() if k != "groq_api"}
prompt = f"""
You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
Problem Type:
Query: {query}
Context: {json.dumps(clean_context)}
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
PROBLEM ANALYSIS:
- [First key aspect or complexity factor]
- [Second key aspect or complexity factor]
- [Third key aspect or complexity factor]
SOLUTION PATHS:
- Path 1: [Specific solution approach]
- Path 2: [Alternative solution approach]
- Path 3: [Another alternative approach]
META INSIGHTS:
- Learning 1: [Key insight about the problem space]
- Learning 2: [Key insight about solution approaches]
- Learning 3: [Key insight about trade-offs]
CONCLUSION:
[Final synthesized solution incorporating meta-learnings]
"""
response = await context["groq_api"].predict(prompt)
if not response["success"]:
return response
# Parse response into components
lines = response["answer"].split("\n")
problem_analysis = []
solution_paths = []
meta_insights = []
conclusion = ""
section = None
for line in lines:
line = line.strip()
if not line:
continue
if "PROBLEM ANALYSIS:" in line:
section = "analysis"
elif "SOLUTION PATHS:" in line:
section = "paths"
elif "META INSIGHTS:" in line:
section = "insights"
elif "CONCLUSION:" in line:
section = "conclusion"
elif line.startswith("-"):
content = line.lstrip("- ").strip()
if section == "analysis":
problem_analysis.append(content)
elif section == "paths":
solution_paths.append(content)
elif section == "insights":
meta_insights.append(content)
elif section == "conclusion":
conclusion += line + " "
return {
"success": True,
"problem_analysis": problem_analysis,
"solution_paths": solution_paths,
"meta_insights": meta_insights,
"conclusion": conclusion.strip(),
# Add standard fields for compatibility
"reasoning_path": problem_analysis + solution_paths + meta_insights,
"conclusion": conclusion.strip()
}
except Exception as e:
return {"success": False, "error": str(e)}
|