agentic-system / app.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
raw
history blame
22.8 kB
"""
Advanced Agentic System Interface
-------------------------------
Provides a chat interface to interact with the autonomous agent teams:
- Team A: Coders (App/Software Developers)
- Team B: Business (Entrepreneurs)
- Team C: Research (Deep Online Research)
- Team D: Crypto & Sports Trading
"""
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from typing import Dict, Any, List, Tuple, Optional
import logging
from pathlib import Path
import asyncio
from datetime import datetime
import json
from requests.adapters import HTTPAdapter, Retry
from urllib3.util.retry import Retry
import time
from agentic_system import AgenticSystem
from team_management import TeamManager, TeamType, TeamObjective
from orchestrator import AgentOrchestrator
from reasoning import UnifiedReasoningEngine as ReasoningEngine
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure network settings
TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
MAX_RETRIES = 5
RETRY_BACKOFF = 1
def setup_requests_session():
"""Configure requests session with retries."""
session = requests.Session()
retry_strategy = Retry(
total=MAX_RETRIES,
backoff_factor=RETRY_BACKOFF,
status_forcelist=[408, 429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"]
)
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("https://", adapter)
session.mount("http://", adapter)
return session
def check_network(max_attempts=3):
"""Check network connectivity with retries."""
session = setup_requests_session()
for attempt in range(max_attempts):
try:
# Try multiple DNS servers
for dns in ['8.8.8.8', '8.8.4.4', '1.1.1.1']:
try:
socket.gethostbyname('huggingface.co')
break
except socket.gaierror:
continue
# Test connection to Hugging Face
response = session.get('https://huggingface.co/api/health',
timeout=TIMEOUT)
if response.status_code == 200:
return True
except (requests.RequestException, socket.gaierror) as e:
logger.warning(f"Network check attempt {attempt + 1} failed: {e}")
if attempt < max_attempts - 1:
time.sleep(RETRY_BACKOFF * (attempt + 1))
continue
logger.error("Network connectivity check failed after all attempts")
return False
class ChatInterface:
def __init__(self):
# Check network connectivity
if not check_network():
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
# Initialize core components with consistent configuration
config = {
"min_confidence": 0.7,
"parallel_threshold": 3,
"learning_rate": 0.1,
"strategy_weights": {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
}
}
self.orchestrator = AgentOrchestrator(config)
self.agentic_system = AgenticSystem(config)
self.team_manager = TeamManager(self.orchestrator)
self.chat_history = []
self.active_objectives = {}
# Set up network session
self.session = setup_requests_session()
# Initialize teams
asyncio.run(self.team_manager.initialize_team_agents())
async def process_message(
self,
message: str,
history: List[List[str]]
) -> Tuple[str, List[List[str]]]:
"""Process incoming chat message."""
try:
# Update chat history
self.chat_history = history
# Process message
response = await self._handle_message(message)
# Update history
if response:
history.append([message, response])
return response, history
except Exception as e:
logger.error(f"Error processing message: {str(e)}")
error_msg = "I apologize, but I encountered an error. Please try again."
history.append([message, error_msg])
return error_msg, history
async def _handle_message(self, message: str) -> str:
"""Handle message processing with error recovery."""
try:
# Analyze intent
intent = await self._analyze_intent(message)
intent_type = self._get_intent_type(intent)
# Route to appropriate handler
if intent_type == "query":
return await self._handle_query(message)
elif intent_type == "objective":
return await self._handle_objective(message)
elif intent_type == "status":
return await self._handle_status_request(message)
else:
return await self._handle_general_chat(message)
except Exception as e:
logger.error(f"Error in message handling: {str(e)}")
return "I apologize, but I encountered an error processing your message. Please try again."
def _get_intent_type(self, intent) -> str:
"""Safely extract intent type from various result formats."""
if isinstance(intent, dict):
return intent.get("type", "general")
return "general"
async def _analyze_intent(self, message: str) -> Dict[str, Any]:
"""Analyze user message intent with error handling."""
try:
# Use reasoning engine to analyze intent
analysis = await self.orchestrator.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"active_objectives": self.active_objectives
}
)
return {
"type": analysis.get("intent_type", "general"),
"confidence": analysis.get("confidence", 0.5),
"entities": analysis.get("entities", []),
"action_required": analysis.get("action_required", False)
}
except Exception as e:
logger.error(f"Error analyzing intent: {str(e)}")
return {"type": "general", "confidence": 0.5}
async def _handle_query(self, message: str) -> str:
"""Handle information queries."""
try:
# Get relevant teams for the query
recommended_teams = await self.team_manager.get_team_recommendations(message)
# Get responses from relevant teams
responses = []
for team_type in recommended_teams:
response = await self._get_team_response(team_type, message)
if response:
responses.append(response)
if not responses:
return "I apologize, but I couldn't find a relevant answer to your query."
# Combine and format responses
return self._format_team_responses(responses)
except Exception as e:
logger.error(f"Error handling query: {str(e)}")
return "I apologize, but I encountered an error processing your query. Please try again."
async def _handle_objective(self, message: str) -> str:
"""Handle new objective creation."""
try:
# Create new objective
objective_id = await self.team_manager.create_objective(message)
if not objective_id:
return "I apologize, but I couldn't create the objective. Please try again."
# Format and return response
return self._format_objective_creation(objective_id)
except Exception as e:
logger.error(f"Error creating objective: {str(e)}")
return "I apologize, but I encountered an error creating the objective. Please try again."
async def _handle_status_request(self, message: str) -> str:
"""Handle status check requests."""
try:
# Get system status
system_status = await self.agentic_system.get_system_status()
# Get team status
team_status = {}
for team_id, team in self.team_manager.teams.items():
team_status[team.name] = await self.team_manager.monitor_objective_progress(team_id)
# Get objective status
objective_status = {}
for obj_id, obj in self.active_objectives.items():
objective_status[obj_id] = await self.team_manager.monitor_objective_progress(obj_id)
return self._format_status_response(system_status, team_status, objective_status)
except Exception as e:
logger.error(f"Error getting status: {str(e)}")
return "I apologize, but I encountered an error getting the status. Please try again."
async def _handle_general_chat(self, message: str) -> str:
"""Handle general chat interactions with error recovery."""
try:
# Use reasoning engine for response generation
response = await self.orchestrator.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"system_state": await self.agentic_system.get_system_status()
}
)
if not response or not response.get("response"):
return "I apologize, but I couldn't generate a meaningful response. Please try again."
return response["response"]
except Exception as e:
logger.error(f"Error in general chat: {str(e)}")
return "I apologize, but I encountered an error processing your message. Please try again."
async def _get_team_response(self, team_type: TeamType, query: str) -> Dict[str, Any]:
"""Get response from a specific team."""
try:
team = self.team_manager.teams.get(team_type.value)
if not team:
return None
# Get response from team's agents
responses = []
for agent in team.agents:
response = await agent.process_query(query)
if response:
responses.append(response)
if not responses:
return None
# Return best response
return self._combine_agent_responses(responses)
except Exception as e:
logger.error(f"Error getting team response: {str(e)}")
return None
def _combine_agent_responses(self, responses: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Combine multiple agent responses into a coherent response."""
try:
# Sort by confidence
valid_responses = [
r for r in responses
if r.get("success", False) and r.get("response")
]
if not valid_responses:
return None
sorted_responses = sorted(
valid_responses,
key=lambda x: x.get("confidence", 0),
reverse=True
)
# Take the highest confidence response
return sorted_responses[0]
except Exception as e:
logger.error(f"Error combining responses: {str(e)}")
return None
def _format_team_responses(self, responses: List[Dict[str, Any]]) -> str:
"""Format team responses into a readable message."""
try:
if not responses:
return "No team responses available."
formatted = []
for resp in responses:
if resp and resp.get("response"):
team_name = resp.get("team_name", "Unknown Team")
confidence = resp.get("confidence", 0)
formatted.append(
f"\n{team_name} (Confidence: {confidence:.2%}):\n{resp['response']}"
)
if not formatted:
return "No valid team responses available."
return "\n".join(formatted)
except Exception as e:
logger.error(f"Error formatting responses: {str(e)}")
return "Error formatting team responses."
def _format_objective_creation(self, objective_id: str) -> str:
"""Format objective creation response."""
try:
obj = self.active_objectives.get(objective_id)
if not obj:
return "Objective created but details not available."
return "\n".join([
"New Objective Created:",
f"Description: {obj['description']}",
f"Status: {obj['status']}",
f"Assigned Teams: {', '.join(t.value for t in obj['teams'])}"
])
except Exception as e:
logger.error(f"Error formatting objective: {str(e)}")
return "Error formatting objective details."
def _format_status_response(
self,
system_status: Dict[str, Any],
team_status: Dict[str, Any],
objective_status: Dict[str, Any]
) -> str:
"""Format status response."""
try:
# Format system status
status = [
"System Status:",
f"- State: {system_status['state']}",
f"- Active Agents: {system_status['agent_count']}",
f"- Active Tasks: {system_status['active_tasks']}",
"\nTeam Status:"
]
# Add team status
for team_name, team_info in team_status.items():
status.extend([
f"\n{team_name}:",
f"- Active Agents: {team_info['active_agents']}",
f"- Completion Rate: {team_info['completion_rate']:.2%}",
f"- Collaboration Score: {team_info['collaboration_score']:.2f}"
])
# Add objective status
if objective_status:
status.append("\nActive Objectives:")
for obj_id, obj_info in objective_status.items():
obj = self.active_objectives[obj_id]
status.extend([
f"\n{obj['description']}:",
f"- Status: {obj['status']}",
f"- Teams: {', '.join(t.value for t in obj['teams'])}",
f"- Progress: {sum(t['completion_rate'] for t in obj_info.values())/len(obj_info):.2%}"
])
return "\n".join(status)
except Exception as e:
logger.error(f"Error formatting status: {str(e)}")
return "Error formatting status information."
class VentureUI:
def __init__(self, app):
self.app = app
def create_interface(self):
"""Create the Gradio interface."""
with gr.Blocks(
theme=gr.themes.Soft(),
analytics_enabled=False,
title="Advanced Agentic System"
) as interface:
# Verify Gradio version
gr.Markdown(f"""
# Advanced Agentic System Chat Interface v{gr.__version__}
Chat with our autonomous agent teams:
- Team A: Coders (App/Software Developers)
- Team B: Business (Entrepreneurs)
- Team C: Research (Deep Online Research)
- Team D: Crypto & Sports Trading
You can:
1. Ask questions
2. Create new objectives
3. Check status of teams and objectives
4. Get insights and recommendations
""")
chatbot = gr.Chatbot(
label="Chat History",
height=400,
bubble_full_width=False,
show_copy_button=True,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Chat with the Agentic System...",
lines=2,
scale=9,
autofocus=True,
container=True
)
submit = gr.Button(
"Send",
scale=1,
variant="primary"
)
with gr.Row():
clear = gr.ClearButton(
[msg, chatbot],
value="Clear Chat",
variant="secondary",
scale=1
)
retry = gr.Button(
"Retry Last",
variant="secondary",
scale=1
)
async def respond(message, history):
try:
# Convert history to the format expected by process_message
history_list = [[x, y] for x, y in history] if history else []
response, history_list = await self.app(message, history_list)
# Update history
if history is None:
history = []
history.append((message, response))
return "", history
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
error_msg = "I apologize, but I encountered an error. Please try again."
if history is None:
history = []
history.append((message, error_msg))
return "", history
async def retry_last(history):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove last exchange
return await respond(last_user_msg, history)
msg.submit(
respond,
[msg, chatbot],
[msg, chatbot],
api_name="chat"
).then(
lambda: gr.update(interactive=True),
None,
[msg, submit],
queue=False
)
submit.click(
respond,
[msg, chatbot],
[msg, chatbot],
api_name="submit"
).then(
lambda: gr.update(interactive=True),
None,
[msg, submit],
queue=False
)
retry.click(
retry_last,
[chatbot],
[chatbot],
api_name="retry"
)
# Event handlers for better UX
msg.change(lambda x: gr.update(interactive=bool(x.strip())), [msg], [submit])
# Add example inputs
gr.Examples(
examples=[
"What can Team A (Coders) help me with?",
"Create a new objective: Analyze market trends",
"What's the status of all teams?",
"Give me insights about recent developments"
],
inputs=msg,
label="Example Queries"
)
return interface
def create_chat_interface() -> gr.Blocks:
"""Create Gradio chat interface."""
chat = ChatInterface()
ui = VentureUI(chat.process_message)
return ui.create_interface()
# Initialize FastAPI
app = FastAPI(
title="Advanced Agentic System",
description="Venture Strategy Optimizer with OpenAI-compatible API",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Include OpenAI-compatible routes
from api.openai_compatible import OpenAICompatibleAPI
reasoning_engine = UnifiedReasoningEngine()
openai_api = OpenAICompatibleAPI(reasoning_engine)
app.include_router(openai_api.router, tags=["OpenAI Compatible"])
# Original API routes
@app.get("/api/health")
async def health_check():
"""Health check endpoint."""
return {
"status": "healthy",
"version": "1.0.0",
"endpoints": {
"openai_compatible": "/v1/chat/completions",
"venture": "/api/venture",
"ui": "/"
}
}
@app.post("/api/reason")
async def reason(query: str, context: Optional[Dict[str, Any]] = None):
"""Reasoning endpoint."""
try:
result = await reasoning_engine.reason(query, context or {})
return result
except Exception as e:
logger.error(f"Reasoning error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/venture/analyze")
async def analyze_venture(
venture_type: str,
description: str,
metrics: Optional[Dict[str, Any]] = None
):
"""Venture analysis endpoint."""
try:
result = await VentureAPI(reasoning_engine).analyze_venture(
venture_type=venture_type,
description=description,
metrics=metrics or {}
)
return result
except Exception as e:
logger.error(f"Analysis error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/venture/types")
async def get_venture_types():
"""Get available venture types."""
return VentureAPI(reasoning_engine).get_venture_types()
# Create Gradio interface
interface = create_chat_interface()
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, interface, path="/")
if __name__ == "__main__":
# Run with uvicorn when called directly
uvicorn.run(
"app:app",
host="0.0.0.0",
port=7860,
reload=True,
workers=4
)