Spaces:
Runtime error
Runtime error
"""Specialized strategies for autonomous business and revenue generation.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class VentureType(Enum): | |
"""Types of business ventures.""" | |
AI_STARTUP = "ai_startup" | |
SAAS = "saas" | |
API_SERVICE = "api_service" | |
DATA_ANALYTICS = "data_analytics" | |
AUTOMATION_SERVICE = "automation_service" | |
CONSULTING = "consulting" | |
DIGITAL_PRODUCTS = "digital_products" | |
MARKETPLACE = "marketplace" | |
class RevenueStream(Enum): | |
"""Types of revenue streams.""" | |
SUBSCRIPTION = "subscription" | |
USAGE_BASED = "usage_based" | |
LICENSING = "licensing" | |
CONSULTING = "consulting" | |
PRODUCT_SALES = "product_sales" | |
COMMISSION = "commission" | |
ADVERTISING = "advertising" | |
PARTNERSHIP = "partnership" | |
class VentureMetrics: | |
"""Key business metrics.""" | |
revenue: float | |
profit_margin: float | |
customer_acquisition_cost: float | |
lifetime_value: float | |
churn_rate: float | |
growth_rate: float | |
burn_rate: float | |
runway_months: float | |
roi: float | |
class MarketOpportunity: | |
"""Market opportunity analysis.""" | |
market_size: float | |
growth_potential: float | |
competition_level: float | |
entry_barriers: float | |
regulatory_risks: float | |
technology_risks: float | |
monetization_potential: float | |
class AIStartupStrategy(ReasoningStrategy): | |
""" | |
Advanced AI startup strategy that: | |
1. Identifies profitable AI applications | |
2. Analyzes market opportunities | |
3. Develops MVP strategies | |
4. Plans scaling approaches | |
5. Optimizes revenue streams | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate AI startup strategy.""" | |
try: | |
# Market analysis | |
market = await self._analyze_market(query, context) | |
# Technology assessment | |
tech = await self._assess_technology(market, context) | |
# Business model | |
model = await self._develop_business_model(tech, context) | |
# Growth strategy | |
strategy = await self._create_growth_strategy(model, context) | |
# Financial projections | |
projections = await self._project_financials(strategy, context) | |
return { | |
"success": projections["annual_profit"] >= 1_000_000, | |
"market_analysis": market, | |
"tech_assessment": tech, | |
"business_model": model, | |
"growth_strategy": strategy, | |
"financials": projections, | |
"confidence": self._calculate_confidence(projections) | |
} | |
except Exception as e: | |
logging.error(f"Error in AI startup strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class SaaSVentureStrategy(ReasoningStrategy): | |
""" | |
Advanced SaaS venture strategy that: | |
1. Identifies scalable SaaS opportunities | |
2. Develops pricing strategies | |
3. Plans customer acquisition | |
4. Optimizes retention | |
5. Maximizes recurring revenue | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate SaaS venture strategy.""" | |
try: | |
# Opportunity analysis | |
opportunity = await self._analyze_opportunity(query, context) | |
# Product strategy | |
product = await self._develop_product_strategy(opportunity, context) | |
# Pricing model | |
pricing = await self._create_pricing_model(product, context) | |
# Growth plan | |
growth = await self._plan_growth(pricing, context) | |
# Revenue projections | |
projections = await self._project_revenue(growth, context) | |
return { | |
"success": projections["annual_revenue"] >= 1_000_000, | |
"opportunity": opportunity, | |
"product": product, | |
"pricing": pricing, | |
"growth": growth, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in SaaS venture strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class AutomationVentureStrategy(ReasoningStrategy): | |
""" | |
Advanced automation venture strategy that: | |
1. Identifies automation opportunities | |
2. Analyzes cost-saving potential | |
3. Develops automation solutions | |
4. Plans implementation | |
5. Maximizes ROI | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate automation venture strategy.""" | |
try: | |
# Opportunity identification | |
opportunities = await self._identify_opportunities(query, context) | |
# Solution development | |
solutions = await self._develop_solutions(opportunities, context) | |
# Implementation strategy | |
implementation = await self._create_implementation_strategy(solutions, context) | |
# ROI analysis | |
roi = await self._analyze_roi(implementation, context) | |
# Scale strategy | |
scale = await self._create_scale_strategy(roi, context) | |
return { | |
"success": roi["annual_profit"] >= 1_000_000, | |
"opportunities": opportunities, | |
"solutions": solutions, | |
"implementation": implementation, | |
"roi": roi, | |
"scale": scale | |
} | |
except Exception as e: | |
logging.error(f"Error in automation venture strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class DataVentureStrategy(ReasoningStrategy): | |
""" | |
Advanced data venture strategy that: | |
1. Identifies valuable data opportunities | |
2. Develops data products | |
3. Creates monetization strategies | |
4. Ensures compliance | |
5. Maximizes data value | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate data venture strategy.""" | |
try: | |
# Data opportunity analysis | |
opportunity = await self._analyze_data_opportunity(query, context) | |
# Product development | |
product = await self._develop_data_product(opportunity, context) | |
# Monetization strategy | |
monetization = await self._create_monetization_strategy(product, context) | |
# Compliance plan | |
compliance = await self._ensure_compliance(monetization, context) | |
# Scale plan | |
scale = await self._plan_scaling(compliance, context) | |
return { | |
"success": monetization["annual_revenue"] >= 1_000_000, | |
"opportunity": opportunity, | |
"product": product, | |
"monetization": monetization, | |
"compliance": compliance, | |
"scale": scale | |
} | |
except Exception as e: | |
logging.error(f"Error in data venture strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class APIVentureStrategy(ReasoningStrategy): | |
""" | |
Advanced API venture strategy that: | |
1. Identifies API opportunities | |
2. Develops API products | |
3. Creates pricing models | |
4. Plans scaling | |
5. Maximizes API value | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate API venture strategy.""" | |
try: | |
# API opportunity analysis | |
opportunity = await self._analyze_api_opportunity(query, context) | |
# Product development | |
product = await self._develop_api_product(opportunity, context) | |
# Pricing strategy | |
pricing = await self._create_api_pricing(product, context) | |
# Scale strategy | |
scale = await self._plan_api_scaling(pricing, context) | |
# Revenue projections | |
projections = await self._project_api_revenue(scale, context) | |
return { | |
"success": projections["annual_revenue"] >= 1_000_000, | |
"opportunity": opportunity, | |
"product": product, | |
"pricing": pricing, | |
"scale": scale, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in API venture strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class MarketplaceVentureStrategy(ReasoningStrategy): | |
""" | |
Advanced marketplace venture strategy that: | |
1. Identifies marketplace opportunities | |
2. Develops platform strategy | |
3. Plans liquidity generation | |
4. Optimizes matching | |
5. Maximizes transaction value | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate marketplace venture strategy.""" | |
try: | |
# Opportunity analysis | |
opportunity = await self._analyze_marketplace_opportunity(query, context) | |
# Platform strategy | |
platform = await self._develop_platform_strategy(opportunity, context) | |
# Liquidity strategy | |
liquidity = await self._create_liquidity_strategy(platform, context) | |
# Growth strategy | |
growth = await self._plan_marketplace_growth(liquidity, context) | |
# Revenue projections | |
projections = await self._project_marketplace_revenue(growth, context) | |
return { | |
"success": projections["annual_revenue"] >= 1_000_000, | |
"opportunity": opportunity, | |
"platform": platform, | |
"liquidity": liquidity, | |
"growth": growth, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in marketplace venture strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class VenturePortfolioStrategy(ReasoningStrategy): | |
""" | |
Advanced venture portfolio strategy that: | |
1. Optimizes venture mix | |
2. Balances risk-reward | |
3. Allocates resources | |
4. Manages dependencies | |
5. Maximizes portfolio value | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate venture portfolio strategy.""" | |
try: | |
# Portfolio analysis | |
analysis = await self._analyze_portfolio(query, context) | |
# Venture selection | |
selection = await self._select_ventures(analysis, context) | |
# Resource allocation | |
allocation = await self._allocate_resources(selection, context) | |
# Risk management | |
risk = await self._manage_risk(allocation, context) | |
# Portfolio projections | |
projections = await self._project_portfolio(risk, context) | |
return { | |
"success": projections["annual_profit"] >= 1_000_000, | |
"analysis": analysis, | |
"selection": selection, | |
"allocation": allocation, | |
"risk": risk, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in venture portfolio strategy: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze potential venture portfolio.""" | |
prompt = f""" | |
Analyze venture portfolio opportunities: | |
Query: {query} | |
Context: {json.dumps(context)} | |
Consider: | |
1. Market opportunities | |
2. Technology trends | |
3. Resource requirements | |
4. Risk factors | |
5. Synergy potential | |
Format as: | |
[Analysis] | |
Opportunities: ... | |
Trends: ... | |
Resources: ... | |
Risks: ... | |
Synergies: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_portfolio_analysis(response["answer"]) | |
def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]: | |
"""Parse portfolio analysis from response.""" | |
analysis = { | |
"opportunities": [], | |
"trends": [], | |
"resources": {}, | |
"risks": [], | |
"synergies": [] | |
} | |
current_section = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if line.startswith('Opportunities:'): | |
current_section = "opportunities" | |
elif line.startswith('Trends:'): | |
current_section = "trends" | |
elif line.startswith('Resources:'): | |
current_section = "resources" | |
elif line.startswith('Risks:'): | |
current_section = "risks" | |
elif line.startswith('Synergies:'): | |
current_section = "synergies" | |
elif current_section and line: | |
if current_section == "resources": | |
try: | |
key, value = line.split(':') | |
analysis[current_section][key.strip()] = value.strip() | |
except: | |
pass | |
else: | |
analysis[current_section].append(line) | |
return analysis | |
def get_venture_metrics(self) -> Dict[str, Any]: | |
"""Get comprehensive venture metrics.""" | |
return { | |
"portfolio_metrics": { | |
"total_ventures": len(self.ventures), | |
"profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0), | |
"total_revenue": sum(v.metrics.revenue for v in self.ventures), | |
"average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]), | |
"portfolio_roi": np.mean([v.metrics.roi for v in self.ventures]) | |
}, | |
"market_metrics": { | |
"total_market_size": sum(v.opportunity.market_size for v in self.ventures), | |
"average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]), | |
"risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures]) | |
}, | |
"performance_metrics": { | |
"customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]), | |
"lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]), | |
"churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]), | |
"burn_rate": sum(v.metrics.burn_rate for v in self.ventures) | |
} | |
} | |
class VentureStrategy(ReasoningStrategy): | |
""" | |
Advanced venture strategy that combines multiple specialized strategies | |
to generate comprehensive business plans and recommendations. | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize venture strategy with component strategies.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Initialize component strategies with shared config | |
strategy_config = { | |
'min_confidence': self.min_confidence, | |
'parallel_threshold': self.parallel_threshold, | |
'learning_rate': self.learning_rate, | |
'strategy_weights': self.strategy_weights | |
} | |
self.strategies = { | |
VentureType.AI_STARTUP: AIStartupStrategy(strategy_config), | |
VentureType.SAAS: SaaSVentureStrategy(strategy_config), | |
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config), | |
VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config), | |
VentureType.API_SERVICE: APIVentureStrategy(strategy_config), | |
VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config) | |
} | |
# Portfolio strategy for multi-venture optimization | |
self.portfolio_strategy = VenturePortfolioStrategy(strategy_config) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Generate venture strategy based on query and context. | |
Args: | |
query: The venture strategy query | |
context: Additional context and parameters | |
Returns: | |
Dict containing venture strategy and confidence scores | |
""" | |
try: | |
# Determine venture type from query/context | |
venture_type = self._determine_venture_type(query, context) | |
# Get strategy for venture type | |
strategy = self.strategies.get(venture_type) | |
if not strategy: | |
raise ValueError(f"Unsupported venture type: {venture_type}") | |
# Generate strategy | |
strategy_result = await strategy.reason(query, context) | |
# Get portfolio analysis | |
portfolio_result = await self.portfolio_strategy.reason(query, context) | |
# Combine results | |
combined_result = self._combine_results( | |
strategy_result, | |
portfolio_result, | |
venture_type | |
) | |
return { | |
'answer': self._format_strategy(combined_result), | |
'confidence': combined_result.get('confidence', 0.0), | |
'venture_type': venture_type.value, | |
'strategy': strategy_result, | |
'portfolio_analysis': portfolio_result | |
} | |
except Exception as e: | |
logging.error(f"Venture strategy generation failed: {str(e)}") | |
return { | |
'error': f"Venture strategy generation failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
def _determine_venture_type(self, query: str, context: Dict[str, Any]) -> VentureType: | |
"""Determine venture type from query and context.""" | |
# Use context if available | |
if 'venture_type' in context: | |
return VentureType(context['venture_type']) | |
# Simple keyword matching | |
query_lower = query.lower() | |
if any(term in query_lower for term in ['ai', 'ml', 'model', 'neural']): | |
return VentureType.AI_STARTUP | |
elif any(term in query_lower for term in ['saas', 'software', 'cloud']): | |
return VentureType.SAAS | |
elif any(term in query_lower for term in ['automate', 'automation', 'workflow']): | |
return VentureType.AUTOMATION_SERVICE | |
elif any(term in query_lower for term in ['data', 'analytics', 'insights']): | |
return VentureType.DATA_ANALYTICS | |
elif any(term in query_lower for term in ['api', 'service', 'endpoint']): | |
return VentureType.API_SERVICE | |
elif any(term in query_lower for term in ['marketplace', 'platform', 'network']): | |
return VentureType.MARKETPLACE | |
# Default to AI startup if unclear | |
return VentureType.AI_STARTUP | |
def _combine_results( | |
self, | |
strategy_result: Dict[str, Any], | |
portfolio_result: Dict[str, Any], | |
venture_type: VentureType | |
) -> Dict[str, Any]: | |
"""Combine strategy and portfolio results.""" | |
return { | |
'venture_type': venture_type.value, | |
'strategy': strategy_result.get('strategy', {}), | |
'metrics': strategy_result.get('metrics', {}), | |
'portfolio_fit': portfolio_result.get('portfolio_fit', {}), | |
'recommendations': strategy_result.get('recommendations', []), | |
'confidence': min( | |
strategy_result.get('confidence', 0.0), | |
portfolio_result.get('confidence', 0.0) | |
) | |
} | |
def _format_strategy(self, result: Dict[str, Any]) -> str: | |
"""Format venture strategy into readable text.""" | |
sections = [] | |
# Venture type | |
sections.append(f"Venture Type: {result['venture_type'].replace('_', ' ').title()}") | |
# Strategy overview | |
if 'strategy' in result: | |
strategy = result['strategy'] | |
sections.append("\nStrategy Overview:") | |
for key, value in strategy.items(): | |
sections.append(f"- {key.replace('_', ' ').title()}: {value}") | |
# Key metrics | |
if 'metrics' in result: | |
metrics = result['metrics'] | |
sections.append("\nKey Metrics:") | |
for key, value in metrics.items(): | |
if isinstance(value, (int, float)): | |
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}") | |
else: | |
sections.append(f"- {key.replace('_', ' ').title()}: {value}") | |
# Portfolio fit | |
if 'portfolio_fit' in result: | |
fit = result['portfolio_fit'] | |
sections.append("\nPortfolio Analysis:") | |
for key, value in fit.items(): | |
sections.append(f"- {key.replace('_', ' ').title()}: {value}") | |
# Recommendations | |
if 'recommendations' in result: | |
recs = result['recommendations'] | |
sections.append("\nKey Recommendations:") | |
for rec in recs: | |
sections.append(f"- {rec}") | |
return "\n".join(sections) | |