File size: 18,286 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""Tree of Thoughts reasoning implementation with advanced tree exploration."""

import logging
from typing import Dict, Any, List, Optional, Set, Tuple
import json
from dataclasses import dataclass
from enum import Enum
import heapq
from collections import defaultdict

from .base import ReasoningStrategy

class NodeType(Enum):
    """Types of nodes in the thought tree."""
    ROOT = "root"
    HYPOTHESIS = "hypothesis"
    EVIDENCE = "evidence"
    ANALYSIS = "analysis"
    SYNTHESIS = "synthesis"
    EVALUATION = "evaluation"
    CONCLUSION = "conclusion"

@dataclass
class TreeNode:
    """Represents a node in the thought tree."""
    id: str
    type: NodeType
    content: str
    confidence: float
    children: List['TreeNode']
    parent: Optional['TreeNode']
    metadata: Dict[str, Any]
    depth: int
    evaluation_score: float = 0.0

class TreeOfThoughtsStrategy(ReasoningStrategy):
    """
    Advanced Tree of Thoughts reasoning implementation with:
    - Beam search for path exploration
    - Dynamic node evaluation
    - Pruning strategies
    - Path optimization
    - Meta-learning from tree patterns
    """
    
    def __init__(self, 
                 min_confidence: float = 0.7,
                 parallel_threshold: int = 3,
                 learning_rate: float = 0.1,
                 strategy_weights: Optional[Dict[str, float]] = None):
        self.min_confidence = min_confidence
        self.parallel_threshold = parallel_threshold
        self.learning_rate = learning_rate
        self.strategy_weights = strategy_weights or {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        }
        self.node_history: Dict[str, TreeNode] = {}
        self.path_patterns: Dict[str, float] = defaultdict(float)
        
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Main reasoning method implementing tree of thoughts."""
        try:
            # Initialize root node
            root = await self._create_root_node(query, context)
            
            # Build and explore tree
            tree = await self._build_tree(root, context)
            
            # Find best paths
            paths = await self._find_best_paths(tree, context)
            
            # Synthesize conclusion
            conclusion = await self._synthesize_conclusion(paths, context)
            
            # Update history and patterns
            self._update_history(tree)
            self._update_patterns(paths)
            
            return {
                "success": True,
                "answer": conclusion["answer"],
                "confidence": conclusion["confidence"],
                "tree": self._tree_to_dict(tree),
                "best_paths": [self._path_to_dict(p) for p in paths],
                "reasoning_trace": conclusion["trace"],
                "meta_insights": conclusion["meta_insights"]
            }
        except Exception as e:
            logging.error(f"Error in tree of thoughts reasoning: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _create_root_node(self, query: str, context: Dict[str, Any]) -> TreeNode:
        """Create the root node of the thought tree."""
        prompt = f"""
        Initialize root thought node for query:
        Query: {query}
        Context: {json.dumps(context)}
        
        Provide:
        1. Initial problem decomposition
        2. Key aspects to explore
        3. Evaluation criteria
        4. Success metrics
        
        Format as:
        [Root]
        Decomposition: ...
        Aspects: ...
        Criteria: ...
        Metrics: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_root_node(response["answer"], query)

    async def _build_tree(self, root: TreeNode, context: Dict[str, Any]) -> TreeNode:
        """Build and explore the thought tree."""
        # Initialize beam with root
        beam = [(root.evaluation_score, root)]
        visited: Set[str] = set()
        
        for depth in range(5):
            next_beam = []
            
            for _, node in beam:
                if node.id in visited:
                    continue
                    
                visited.add(node.id)
                
                # Generate child nodes
                children = await self._generate_children(node, context)
                
                # Evaluate and filter children
                evaluated_children = await self._evaluate_nodes(children, context)
                
                # Add to beam
                for child in evaluated_children:
                    if child.evaluation_score > 0.4:
                        next_beam.append((child.evaluation_score, child))
                        node.children.append(child)
            
            # Select best nodes for next iteration
            beam = heapq.nlargest(3, next_beam, key=lambda x: x[0])
            
            if not beam:
                break
        
        return root

    async def _generate_children(self, parent: TreeNode, context: Dict[str, Any]) -> List[TreeNode]:
        """Generate child nodes for a given parent."""
        prompt = f"""
        Generate child thoughts for node:
        Parent: {json.dumps(self._node_to_dict(parent))}
        Context: {json.dumps(context)}
        
        For each child provide:
        1. [Type]: {" | ".join([t.value for t in NodeType if t != NodeType.ROOT])}
        2. [Content]: Main thought
        3. [Confidence]: 0-1 score
        4. [Rationale]: Why this follows from parent
        5. [Potential]: Future exploration potential
        
        Format as:
        [C1]
        Type: ...
        Content: ...
        Confidence: ...
        Rationale: ...
        Potential: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_child_nodes(response["answer"], parent)

    async def _evaluate_nodes(self, nodes: List[TreeNode], context: Dict[str, Any]) -> List[TreeNode]:
        """Evaluate a list of nodes."""
        prompt = f"""
        Evaluate thought nodes:
        Nodes: {json.dumps([self._node_to_dict(n) for n in nodes])}
        Context: {json.dumps(context)}
        
        For each node evaluate:
        1. Logical coherence
        2. Evidence support
        3. Novelty value
        4. Exploration potential
        
        Format as:
        [N1]
        Coherence: 0-1
        Evidence: 0-1
        Novelty: 0-1
        Potential: 0-1
        Overall: 0-1
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._apply_evaluations(nodes, response["answer"])

    async def _find_best_paths(self, root: TreeNode, context: Dict[str, Any]) -> List[List[TreeNode]]:
        """Find the best paths through the tree."""
        paths = []
        current_path = [root]
        
        def dfs(node: TreeNode, path: List[TreeNode]):
            if not node.children:
                paths.append(path[:])
                return
                
            # Sort children by score
            sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
            
            # Explore top paths
            for child in sorted_children[:3]:
                path.append(child)
                dfs(child, path)
                path.pop()
        
        dfs(root, current_path)
        
        # Evaluate complete paths
        evaluated_paths = await self._evaluate_paths(paths, context)
        
        # Return top paths
        return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:3]

    async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
        """Synthesize final conclusion from best paths."""
        prompt = f"""
        Synthesize conclusion from thought paths:
        Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
        Context: {json.dumps(context)}
        
        Provide:
        1. Main conclusion
        2. Confidence level
        3. Reasoning trace
        4. Supporting evidence
        5. Alternative perspectives
        6. Meta-insights
        
        Format as:
        [Conclusion]
        Answer: ...
        Confidence: ...
        Trace: ...
        Evidence: ...
        Alternatives: ...
        
        [Meta]
        Insights: ...
        Patterns: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_conclusion(response["answer"])

    def _parse_root_node(self, response: str, query: str) -> TreeNode:
        """Parse root node from response."""
        root = TreeNode(
            id="root",
            type=NodeType.ROOT,
            content=query,
            confidence=1.0,
            children=[],
            parent=None,
            metadata={},
            depth=0
        )
        
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Decomposition:'):
                root.metadata["decomposition"] = line[14:].strip()
            elif line.startswith('Aspects:'):
                root.metadata["aspects"] = [a.strip() for a in line[8:].split(',')]
            elif line.startswith('Criteria:'):
                root.metadata["criteria"] = [c.strip() for c in line[9:].split(',')]
            elif line.startswith('Metrics:'):
                root.metadata["metrics"] = [m.strip() for m in line[8:].split(',')]
        
        return root

    def _parse_child_nodes(self, response: str, parent: TreeNode) -> List[TreeNode]:
        """Parse child nodes from response."""
        children = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[C'):
                if current:
                    children.append(current)
                current = None
            elif line.startswith('Type:'):
                type_str = line[5:].strip()
                try:
                    node_type = NodeType(type_str.lower())
                    current = TreeNode(
                        id=f"{parent.id}_{len(children)}",
                        type=node_type,
                        content="",
                        confidence=0.0,
                        children=[],
                        parent=parent,
                        metadata={},
                        depth=parent.depth + 1
                    )
                except ValueError:
                    logging.warning(f"Invalid node type: {type_str}")
            elif current:
                if line.startswith('Content:'):
                    current.content = line[8:].strip()
                elif line.startswith('Confidence:'):
                    try:
                        current.confidence = float(line[11:].strip())
                    except:
                        current.confidence = 0.5
                elif line.startswith('Rationale:'):
                    current.metadata["rationale"] = line[10:].strip()
                elif line.startswith('Potential:'):
                    current.metadata["potential"] = line[10:].strip()
        
        if current:
            children.append(current)
        
        return children

    def _apply_evaluations(self, nodes: List[TreeNode], response: str) -> List[TreeNode]:
        """Apply evaluation scores to nodes."""
        current_node_idx = 0
        current_scores = {}
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[N'):
                if current_scores and current_node_idx < len(nodes):
                    nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
                    nodes[current_node_idx].metadata.update(current_scores)
                    current_node_idx += 1
                current_scores = {}
            elif ':' in line:
                key, value = line.split(':')
                try:
                    current_scores[key.strip()] = float(value.strip())
                except:
                    pass
        
        if current_scores and current_node_idx < len(nodes):
            nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
            nodes[current_node_idx].metadata.update(current_scores)
        
        return nodes

    async def _evaluate_paths(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> List[List[TreeNode]]:
        """Evaluate complete reasoning paths."""
        prompt = f"""
        Evaluate complete reasoning paths:
        Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
        Context: {json.dumps(context)}
        
        For each path evaluate:
        1. Coherence of progression
        2. Evidence support
        3. Conclusion strength
        4. Novel insights
        
        Format as:
        [P1]
        Coherence: 0-1
        Evidence: 0-1
        Conclusion: 0-1
        Insights: 0-1
        Overall: 0-1
        """
        
        response = await context["groq_api"].predict(prompt)
        scores = self._parse_path_scores(response["answer"])
        
        # Apply scores to paths
        for i, path in enumerate(paths):
            if i < len(scores):
                for node in path:
                    node.evaluation_score *= scores[i]
        
        return paths

    def _parse_path_scores(self, response: str) -> List[float]:
        """Parse path evaluation scores."""
        scores = []
        current_score = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[P'):
                if current_score is not None:
                    scores.append(current_score)
                current_score = None
            elif line.startswith('Overall:'):
                try:
                    current_score = float(line[8:].strip())
                except:
                    current_score = 0.5
        
        if current_score is not None:
            scores.append(current_score)
        
        return scores

    def _parse_conclusion(self, response: str) -> Dict[str, Any]:
        """Parse final conclusion."""
        conclusion = {
            "answer": "",
            "confidence": 0.0,
            "trace": [],
            "evidence": [],
            "alternatives": [],
            "meta_insights": []
        }
        
        section = None
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[Conclusion]'):
                section = "conclusion"
            elif line.startswith('[Meta]'):
                section = "meta"
            elif section == "conclusion":
                if line.startswith('Answer:'):
                    conclusion["answer"] = line[7:].strip()
                elif line.startswith('Confidence:'):
                    try:
                        conclusion["confidence"] = float(line[11:].strip())
                    except:
                        conclusion["confidence"] = 0.5
                elif line.startswith('Trace:'):
                    conclusion["trace"] = [t.strip() for t in line[6:].split(',')]
                elif line.startswith('Evidence:'):
                    conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
                elif line.startswith('Alternatives:'):
                    conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
            elif section == "meta":
                if line.startswith('Insights:'):
                    conclusion["meta_insights"].extend([i.strip() for i in line[9:].split(',')])
        
        return conclusion

    def _node_to_dict(self, node: TreeNode) -> Dict[str, Any]:
        """Convert node to dictionary for serialization."""
        return {
            "id": node.id,
            "type": node.type.value,
            "content": node.content,
            "confidence": node.confidence,
            "evaluation_score": node.evaluation_score,
            "metadata": node.metadata,
            "depth": node.depth
        }

    def _tree_to_dict(self, root: TreeNode) -> Dict[str, Any]:
        """Convert entire tree to dictionary."""
        def convert_node(node: TreeNode) -> Dict[str, Any]:
            node_dict = self._node_to_dict(node)
            node_dict["children"] = [convert_node(c) for c in node.children]
            return node_dict
        
        return convert_node(root)

    def _path_to_dict(self, path: List[TreeNode]) -> List[Dict[str, Any]]:
        """Convert path to dictionary."""
        return [self._node_to_dict(n) for n in path]

    def _update_history(self, root: TreeNode):
        """Update node history."""
        def add_to_history(node: TreeNode):
            self.node_history[node.id] = node
            for child in node.children:
                add_to_history(child)
        
        add_to_history(root)

    def _update_patterns(self, paths: List[List[TreeNode]]):
        """Update path patterns."""
        for path in paths:
            pattern = "->".join(n.type.value for n in path)
            self.path_patterns[pattern] += path[-1].evaluation_score

    def get_node_history(self) -> Dict[str, Dict[str, Any]]:
        """Get history of all nodes."""
        return {k: self._node_to_dict(v) for k, v in self.node_history.items()}

    def get_successful_patterns(self) -> Dict[str, float]:
        """Get successful reasoning patterns."""
        return dict(sorted(self.path_patterns.items(), key=lambda x: x[1], reverse=True))

    def clear_history(self):
        """Clear node history and patterns."""
        self.node_history.clear()
        self.path_patterns.clear()