Spaces:
Runtime error
Runtime error
File size: 19,051 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
"""
Advanced Team Management System
-----------------------------
Manages specialized teams of agents that work together towards common goals:
1. Team A: Coders (App/Software Developers)
2. Team B: Business (Entrepreneurs)
3. Team C: Research (Deep Online Research)
4. Team D: Crypto & Sports Trading
Features:
- Cross-team collaboration
- Goal alignment
- Resource sharing
- Synchronized execution
"""
from typing import Dict, List, Optional, Set, Union, TypeVar, Any
from dataclasses import dataclass, field
from enum import Enum
import asyncio
from datetime import datetime
import uuid
from collections import defaultdict
from orchestrator import AgentOrchestrator, TaskPriority, AgentRole, AgentState
from reasoning import UnifiedReasoningEngine
# Agent capabilities and personality types
class AgentCapability(Enum):
"""Core capabilities of agents."""
REASONING = "reasoning"
LEARNING = "learning"
EXECUTION = "execution"
COORDINATION = "coordination"
MONITORING = "monitoring"
class AgentPersonality(Enum):
"""Different personality types for agents."""
ANALYTICAL = "analytical"
CREATIVE = "creative"
PRAGMATIC = "pragmatic"
COLLABORATIVE = "collaborative"
PROACTIVE = "proactive"
CAUTIOUS = "cautious"
class TeamType(Enum):
"""Specialized team types."""
CODERS = "coders"
BUSINESS = "business"
RESEARCH = "research"
TRADERS = "traders"
class TeamObjective(Enum):
"""Types of team objectives."""
SOFTWARE_DEVELOPMENT = "software_development"
BUSINESS_OPPORTUNITY = "business_opportunity"
MARKET_RESEARCH = "market_research"
TRADING_STRATEGY = "trading_strategy"
CROSS_TEAM_PROJECT = "cross_team_project"
@dataclass
class TeamProfile:
"""Team profile and capabilities."""
id: str
type: TeamType
name: str
primary_objective: TeamObjective
secondary_objectives: List[TeamObjective]
agent_count: int
expertise_areas: List[str]
collaboration_score: float = 0.0
success_rate: float = 0.0
active_projects: int = 0
@dataclass
class CollaborationLink:
"""Defines collaboration between teams."""
team_a_id: str
team_b_id: str
strength: float
active_projects: int
last_interaction: datetime
success_rate: float
class TeamManager:
"""Manages specialized teams and their collaboration."""
def __init__(self, orchestrator: AgentOrchestrator):
self.orchestrator = orchestrator
self.teams: Dict[str, TeamProfile] = {}
self.agents: Dict[str, Dict[str, 'Agent']] = {} # team_id -> {agent_id -> Agent}
self.collaboration_network: Dict[str, CollaborationLink] = {}
self.shared_objectives: Dict[str, Set[str]] = defaultdict(set) # objective_id -> set of team_ids
self.lock = asyncio.Lock()
# Initialize specialized teams
self._init_teams()
def _init_teams(self):
"""Initialize specialized teams."""
team_configs = {
TeamType.CODERS: {
"name": "Development Team",
"primary": TeamObjective.SOFTWARE_DEVELOPMENT,
"secondary": [
TeamObjective.BUSINESS_OPPORTUNITY,
TeamObjective.MARKET_RESEARCH
],
"expertise": [
"full_stack_development",
"cloud_architecture",
"ai_ml",
"blockchain",
"mobile_development"
]
},
TeamType.BUSINESS: {
"name": "Business Strategy Team",
"primary": TeamObjective.BUSINESS_OPPORTUNITY,
"secondary": [
TeamObjective.MARKET_RESEARCH,
TeamObjective.TRADING_STRATEGY
],
"expertise": [
"market_analysis",
"business_strategy",
"digital_transformation",
"startup_innovation",
"product_management"
]
},
TeamType.RESEARCH: {
"name": "Research & Analysis Team",
"primary": TeamObjective.MARKET_RESEARCH,
"secondary": [
TeamObjective.BUSINESS_OPPORTUNITY,
TeamObjective.TRADING_STRATEGY
],
"expertise": [
"deep_research",
"data_analysis",
"trend_forecasting",
"competitive_analysis",
"technology_assessment"
]
},
TeamType.TRADERS: {
"name": "Trading & Investment Team",
"primary": TeamObjective.TRADING_STRATEGY,
"secondary": [
TeamObjective.MARKET_RESEARCH,
TeamObjective.BUSINESS_OPPORTUNITY
],
"expertise": [
"crypto_trading",
"sports_betting",
"risk_management",
"market_timing",
"portfolio_optimization"
]
}
}
for team_type, config in team_configs.items():
team_id = str(uuid.uuid4())
self.teams[team_id] = TeamProfile(
id=team_id,
type=team_type,
name=config["name"],
primary_objective=config["primary"],
secondary_objectives=config["secondary"],
agent_count=5, # Default size
expertise_areas=config["expertise"]
)
self.agents[team_id] = {}
async def initialize_team_agents(self):
"""Initialize agents for each team with appropriate roles and capabilities."""
for team_id, team in self.teams.items():
await self._create_team_agents(team_id)
await self._establish_collaboration_links(team_id)
async def _create_team_agents(self, team_id: str):
"""Create specialized agents for a team."""
team = self.teams[team_id]
# Define agent configurations based on team type
agent_configs = self._get_agent_configs(team.type)
for config in agent_configs:
agent_id = await self.orchestrator.create_agent(
role=config["role"],
capabilities=config["capabilities"]
)
agent = Agent(
profile=config["profile"],
reasoning_engine=self.orchestrator.reasoning_engine,
meta_learning=self.orchestrator.meta_learning,
config=config.get("config", {})
)
self.agents[team_id][agent_id] = agent
def _get_agent_configs(self, team_type: TeamType) -> List[Dict]:
"""Get agent configurations based on team type."""
base_configs = [
{
"role": AgentRole.COORDINATOR,
"capabilities": [
AgentCapability.REASONING,
AgentCapability.COORDINATION
],
"personality": AgentPersonality.PROACTIVE,
"profile": {
"name": "Coordinator",
"description": "Team coordinator"
}
},
{
"role": AgentRole.EXECUTOR,
"capabilities": [
AgentCapability.EXECUTION,
AgentCapability.LEARNING
],
"personality": AgentPersonality.ANALYTICAL,
"profile": {
"name": "Executor",
"description": "Task executor"
}
}
]
# Add team-specific configurations
if team_type == TeamType.CODERS:
base_configs.extend([
{
"role": AgentRole.EXECUTOR,
"capabilities": [
AgentCapability.EXECUTION,
AgentCapability.REASONING
],
"personality": AgentPersonality.CREATIVE,
"expertise": ["software_development", "system_design"],
"profile": {
"name": "Developer",
"description": "Software developer"
}
}
])
elif team_type == TeamType.BUSINESS:
base_configs.extend([
{
"role": AgentRole.PLANNER,
"capabilities": [
AgentCapability.REASONING,
AgentCapability.LEARNING
],
"personality": AgentPersonality.PROACTIVE,
"expertise": ["business_strategy", "market_analysis"],
"profile": {
"name": "Planner",
"description": "Business planner"
}
}
])
elif team_type == TeamType.RESEARCH:
base_configs.extend([
{
"role": AgentRole.MONITOR,
"capabilities": [
AgentCapability.MONITORING,
AgentCapability.LEARNING
],
"personality": AgentPersonality.ANALYTICAL,
"expertise": ["research", "data_analysis"],
"profile": {
"name": "Researcher",
"description": "Researcher"
}
}
])
elif team_type == TeamType.TRADERS:
base_configs.extend([
{
"role": AgentRole.EXECUTOR,
"capabilities": [
AgentCapability.EXECUTION,
AgentCapability.REASONING
],
"personality": AgentPersonality.CAUTIOUS,
"expertise": ["trading", "risk_management"],
"profile": {
"name": "Trader",
"description": "Trader"
}
}
])
return base_configs
async def _establish_collaboration_links(self, team_id: str):
"""Establish collaboration links with other teams."""
team = self.teams[team_id]
for other_id, other_team in self.teams.items():
if other_id != team_id:
link_id = f"{min(team_id, other_id)}_{max(team_id, other_id)}"
if link_id not in self.collaboration_network:
self.collaboration_network[link_id] = CollaborationLink(
team_a_id=team_id,
team_b_id=other_id,
strength=0.5, # Initial collaboration strength
active_projects=0,
last_interaction=datetime.now(),
success_rate=0.0
)
async def create_cross_team_objective(
self,
objective: str,
required_teams: List[TeamType],
priority: TaskPriority = TaskPriority.MEDIUM
) -> str:
"""Create an objective that requires multiple teams."""
objective_id = str(uuid.uuid4())
# Find relevant teams
selected_teams = []
for team_id, team in self.teams.items():
if team.type in required_teams:
selected_teams.append(team_id)
if len(selected_teams) < len(required_teams):
raise ValueError("Not all required teams are available")
# Create shared objective
self.shared_objectives[objective_id].update(selected_teams)
# Create tasks for each team
tasks = []
for team_id in selected_teams:
task_id = await self.orchestrator.submit_task(
description=f"Team {self.teams[team_id].name} contribution to: {objective}",
priority=priority
)
tasks.append(task_id)
return objective_id
async def monitor_objective_progress(self, objective_id: str) -> Dict:
"""Monitor progress of a cross-team objective."""
if objective_id not in self.shared_objectives:
raise ValueError("Unknown objective")
team_progress = {}
for team_id in self.shared_objectives[objective_id]:
team = self.teams[team_id]
team_agents = self.agents[team_id]
# Calculate team progress
active_agents = sum(1 for agent in team_agents.values() if agent.state == AgentState.BUSY)
completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
team_progress[team.name] = {
"active_agents": active_agents,
"completion_rate": completion_rate,
"collaboration_score": team.collaboration_score
}
return team_progress
async def optimize_team_collaboration(self):
"""Optimize collaboration between teams."""
for link in self.collaboration_network.values():
team_a = self.teams[link.team_a_id]
team_b = self.teams[link.team_b_id]
# Update collaboration strength based on:
# 1. Number of successful joint projects
# 2. Frequency of interaction
# 3. Complementary expertise
success_factor = link.success_rate
interaction_factor = min((datetime.now() - link.last_interaction).days / 30.0, 1.0)
expertise_overlap = len(
set(team_a.expertise_areas) & set(team_b.expertise_areas)
) / len(set(team_a.expertise_areas) | set(team_b.expertise_areas))
new_strength = (
0.4 * success_factor +
0.3 * (1 - interaction_factor) +
0.3 * (1 - expertise_overlap)
)
link.strength = 0.7 * link.strength + 0.3 * new_strength
async def get_team_recommendations(self, objective: str) -> List[TeamType]:
"""Get recommended teams for an objective based on expertise and collaboration history."""
# Analyze objective to determine required expertise
required_expertise = await self._analyze_objective(objective)
# Score each team
team_scores = {}
for team_id, team in self.teams.items():
# Calculate expertise match
expertise_match = len(
set(required_expertise) & set(team.expertise_areas)
) / len(required_expertise)
# Calculate collaboration potential
collab_potential = self._calculate_collaboration_potential(team_id)
# Calculate success history
success_history = team.success_rate
# Weighted score
score = (
0.4 * expertise_match +
0.3 * collab_potential +
0.3 * success_history
)
team_scores[team.type] = score
# Return sorted recommendations
return sorted(
team_scores.keys(),
key=lambda x: team_scores[x],
reverse=True
)
async def _analyze_objective(self, objective: str) -> List[str]:
"""Analyze an objective to determine required expertise."""
# Use reasoning engine to analyze objective
analysis = await self.orchestrator.reasoning_engine.reason(
query=f"Analyze required expertise for: {objective}",
context={
"available_expertise": [
expertise
for team in self.teams.values()
for expertise in team.expertise_areas
]
}
)
return analysis.get("required_expertise", [])
def _calculate_collaboration_potential(self, team_id: str) -> float:
"""Calculate a team's collaboration potential based on history."""
team_links = [
link for link in self.collaboration_network.values()
if team_id in (link.team_a_id, link.team_b_id)
]
if not team_links:
return 0.5
return sum(link.strength for link in team_links) / len(team_links)
async def update_team_metrics(self):
"""Update performance metrics for all teams."""
for team_id, team in self.teams.items():
team_agents = self.agents[team_id]
# Calculate success rate
completed_tasks = sum(
agent.get_completed_task_count()
for agent in team_agents.values()
)
total_tasks = sum(
agent.get_total_task_count()
for agent in team_agents.values()
)
team.success_rate = completed_tasks / max(1, total_tasks)
# Calculate collaboration score
team_links = [
link for link in self.collaboration_network.values()
if team_id in (link.team_a_id, link.team_b_id)
]
team.collaboration_score = (
sum(link.strength for link in team_links) /
len(team_links) if team_links else 0.5
)
class Agent:
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool, config: Optional[Dict[str, Any]] = None):
self.profile = profile
self.config = config or {}
# Use provided reasoning engine or create one with config
self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
min_confidence=self.config.get('min_confidence', 0.7),
parallel_threshold=self.config.get('parallel_threshold', 3),
learning_rate=self.config.get('learning_rate', 0.1),
strategy_weights=self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
)
self.meta_learning = meta_learning
self.state = AgentState.IDLE
def get_task_completion_rate(self):
# Implement task completion rate calculation
pass
def get_completed_task_count(self):
# Implement completed task count calculation
pass
def get_total_task_count(self):
# Implement total task count calculation
pass
|