File size: 19,217 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
"""Advanced portfolio optimization for venture strategies."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class VentureMetrics:
    """Venture performance metrics."""
    revenue: float
    profit: float
    growth_rate: float
    risk_score: float
    resource_usage: Dict[str, float]
    synergy_score: float

@dataclass
class ResourceAllocation:
    """Resource allocation configuration."""
    venture_id: str
    resources: Dict[str, float]
    constraints: List[str]
    dependencies: List[str]
    priority: float

class PortfolioOptimizer:
    """
    Advanced portfolio optimization that:
    1. Optimizes venture mix
    2. Allocates resources
    3. Manages risks
    4. Maximizes synergies
    5. Balances growth
    """
    
    def __init__(self):
        self.ventures: Dict[str, VentureMetrics] = {}
        self.allocations: Dict[str, ResourceAllocation] = {}
        
    async def optimize_portfolio(self,
                               ventures: List[str],
                               context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize venture portfolio."""
        try:
            # Analyze ventures
            analysis = await self._analyze_ventures(ventures, context)
            
            # Optimize allocation
            allocation = await self._optimize_allocation(analysis, context)
            
            # Risk optimization
            risk = await self._optimize_risk(allocation, context)
            
            # Synergy optimization
            synergy = await self._optimize_synergies(risk, context)
            
            # Performance projections
            projections = await self._project_performance(synergy, context)
            
            return {
                "success": projections["annual_profit"] >= 1_000_000,
                "analysis": analysis,
                "allocation": allocation,
                "risk": risk,
                "synergy": synergy,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in portfolio optimization: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _analyze_ventures(self,
                              ventures: List[str],
                              context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze venture characteristics."""
        prompt = f"""
        Analyze ventures:
        Ventures: {json.dumps(ventures)}
        Context: {json.dumps(context)}
        
        Analyze:
        1. Performance metrics
        2. Resource requirements
        3. Risk factors
        4. Growth potential
        5. Synergy opportunities
        
        Format as:
        [Venture1]
        Metrics: ...
        Resources: ...
        Risks: ...
        Growth: ...
        Synergies: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_venture_analysis(response["answer"])

    async def _optimize_allocation(self,
                                 analysis: Dict[str, Any],
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize resource allocation."""
        prompt = f"""
        Optimize resource allocation:
        Analysis: {json.dumps(analysis)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Resource efficiency
        2. Growth potential
        3. Risk balance
        4. Synergy capture
        5. Constraint satisfaction
        
        Format as:
        [Allocation1]
        Venture: ...
        Resources: ...
        Constraints: ...
        Dependencies: ...
        Priority: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_allocation_optimization(response["answer"])

    async def _optimize_risk(self,
                           allocation: Dict[str, Any],
                           context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize risk management."""
        prompt = f"""
        Optimize risk management:
        Allocation: {json.dumps(allocation)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Risk diversification
        2. Exposure limits
        3. Correlation management
        4. Hedging strategies
        5. Contingency planning
        
        Format as:
        [Risk1]
        Type: ...
        Exposure: ...
        Mitigation: ...
        Contingency: ...
        Impact: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_risk_optimization(response["answer"])

    async def _optimize_synergies(self,
                                risk: Dict[str, Any],
                                context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize portfolio synergies."""
        prompt = f"""
        Optimize synergies:
        Risk: {json.dumps(risk)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Resource sharing
        2. Knowledge transfer
        3. Market leverage
        4. Technology reuse
        5. Customer cross-sell
        
        Format as:
        [Synergy1]
        Type: ...
        Ventures: ...
        Potential: ...
        Requirements: ...
        Timeline: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_synergy_optimization(response["answer"])

    async def _project_performance(self,
                                 synergy: Dict[str, Any],
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Project portfolio performance."""
        prompt = f"""
        Project performance:
        Synergy: {json.dumps(synergy)}
        Context: {json.dumps(context)}
        
        Project:
        1. Revenue growth
        2. Profit margins
        3. Resource utilization
        4. Risk metrics
        5. Synergy capture
        
        Format as:
        [Projections]
        Revenue: ...
        Profit: ...
        Resources: ...
        Risk: ...
        Synergies: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_performance_projections(response["answer"])

    def _calculate_portfolio_metrics(self) -> Dict[str, float]:
        """Calculate comprehensive portfolio metrics."""
        if not self.ventures:
            return {
                "total_revenue": 0.0,
                "total_profit": 0.0,
                "avg_growth": 0.0,
                "avg_risk": 0.0,
                "resource_efficiency": 0.0,
                "synergy_capture": 0.0
            }
        
        metrics = {
            "total_revenue": sum(v.revenue for v in self.ventures.values()),
            "total_profit": sum(v.profit for v in self.ventures.values()),
            "avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]),
            "avg_risk": np.mean([v.risk_score for v in self.ventures.values()]),
            "resource_efficiency": self._calculate_resource_efficiency(),
            "synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()])
        }
        
        return metrics

    def _calculate_resource_efficiency(self) -> float:
        """Calculate resource utilization efficiency."""
        if not self.ventures or not self.allocations:
            return 0.0
        
        total_resources = defaultdict(float)
        used_resources = defaultdict(float)
        
        # Sum up total and used resources
        for venture_id, allocation in self.allocations.items():
            for resource, amount in allocation.resources.items():
                total_resources[resource] += amount
                if venture_id in self.ventures:
                    used_resources[resource] += (
                        amount * self.ventures[venture_id].resource_usage.get(resource, 0)
                    )
        
        # Calculate efficiency for each resource
        efficiencies = []
        for resource in total_resources:
            if total_resources[resource] > 0:
                efficiency = used_resources[resource] / total_resources[resource]
                efficiencies.append(efficiency)
        
        return np.mean(efficiencies) if efficiencies else 0.0

    def get_portfolio_insights(self) -> Dict[str, Any]:
        """Get comprehensive portfolio insights."""
        metrics = self._calculate_portfolio_metrics()
        
        return {
            "portfolio_metrics": metrics,
            "venture_metrics": {
                venture_id: {
                    "revenue": v.revenue,
                    "profit": v.profit,
                    "growth_rate": v.growth_rate,
                    "risk_score": v.risk_score,
                    "synergy_score": v.synergy_score
                }
                for venture_id, v in self.ventures.items()
            },
            "resource_allocation": {
                venture_id: {
                    "resources": a.resources,
                    "priority": a.priority,
                    "constraints": len(a.constraints),
                    "dependencies": len(a.dependencies)
                }
                for venture_id, a in self.allocations.items()
            },
            "risk_profile": {
                "portfolio_risk": metrics["avg_risk"],
                "risk_concentration": self._calculate_risk_concentration(),
                "risk_correlation": self._calculate_risk_correlation()
            },
            "optimization_opportunities": self._identify_optimization_opportunities()
        }

    def _calculate_risk_concentration(self) -> float:
        """Calculate risk concentration in portfolio."""
        if not self.ventures:
            return 0.0
        
        risk_weights = [v.risk_score for v in self.ventures.values()]
        return np.std(risk_weights) if len(risk_weights) > 1 else 0.0

    def _calculate_risk_correlation(self) -> float:
        """Calculate risk correlation between ventures."""
        if len(self.ventures) < 2:
            return 0.0
        
        # Create correlation matrix of risk scores and resource usage
        venture_metrics = [
            [v.risk_score] + list(v.resource_usage.values())
            for v in self.ventures.values()
        ]
        
        correlation_matrix = np.corrcoef(venture_metrics)
        return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)])

    def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]:
        """Identify portfolio optimization opportunities."""
        opportunities = []
        
        # Resource optimization opportunities
        resource_efficiency = self._calculate_resource_efficiency()
        if resource_efficiency < 0.8:
            opportunities.append({
                "type": "resource_optimization",
                "potential": 1.0 - resource_efficiency,
                "description": "Improve resource utilization efficiency"
            })
        
        # Risk optimization opportunities
        risk_concentration = self._calculate_risk_concentration()
        if risk_concentration > 0.2:
            opportunities.append({
                "type": "risk_diversification",
                "potential": risk_concentration,
                "description": "Reduce risk concentration"
            })
        
        # Synergy optimization opportunities
        avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0
        if avg_synergy < 0.7:
            opportunities.append({
                "type": "synergy_capture",
                "potential": 1.0 - avg_synergy,
                "description": "Increase synergy capture"
            })
        
        return opportunities

class PortfolioOptimizationStrategy(ReasoningStrategy):
    """
    Advanced portfolio optimization strategy that:
    1. Analyzes venture metrics
    2. Optimizes resource allocation
    3. Balances risk-reward
    4. Maximizes portfolio synergies
    5. Provides actionable recommendations
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize portfolio optimization strategy."""
        super().__init__()
        self.config = config or {}
        self.optimizer = PortfolioOptimizer()
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate portfolio optimization strategy based on query and context.
        
        Args:
            query: The portfolio optimization query
            context: Additional context and parameters
            
        Returns:
            Dict containing optimization strategy and confidence scores
        """
        try:
            # Extract portfolio parameters
            params = self._extract_parameters(query, context)
            
            # Optimize portfolio
            optimization_result = self.optimizer.optimize_portfolio(
                ventures=params.get('ventures', []),
                constraints=params.get('constraints', []),
                objectives=params.get('objectives', [])
            )
            
            # Get metrics
            metrics = self.optimizer.get_portfolio_metrics()
            
            # Generate recommendations
            recommendations = self._generate_recommendations(
                optimization_result,
                metrics
            )
            
            return {
                'answer': self._format_strategy(optimization_result, metrics, recommendations),
                'confidence': self._calculate_confidence(optimization_result),
                'optimization': optimization_result,
                'metrics': metrics,
                'recommendations': recommendations
            }
            
        except Exception as e:
            logging.error(f"Portfolio optimization failed: {str(e)}")
            return {
                'error': f"Portfolio optimization failed: {str(e)}",
                'confidence': 0.0
            }
    
    def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Extract optimization parameters from query and context."""
        params = {}
        
        # Extract ventures
        if 'ventures' in context:
            params['ventures'] = context['ventures']
        else:
            # Default empty portfolio
            params['ventures'] = []
        
        # Extract constraints
        if 'constraints' in context:
            params['constraints'] = context['constraints']
        else:
            # Default constraints
            params['constraints'] = [
                'budget_limit',
                'risk_tolerance',
                'resource_capacity'
            ]
        
        # Extract objectives
        if 'objectives' in context:
            params['objectives'] = context['objectives']
        else:
            # Default objectives
            params['objectives'] = [
                'maximize_returns',
                'minimize_risk',
                'maximize_synergies'
            ]
        
        return params
    
    def _generate_recommendations(
        self,
        optimization_result: Dict[str, Any],
        metrics: Dict[str, Any]
    ) -> List[str]:
        """Generate actionable recommendations."""
        recommendations = []
        
        # Portfolio composition recommendations
        if 'allocation' in optimization_result:
            allocation = optimization_result['allocation']
            recommendations.extend([
                f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}"
                for alloc in allocation
            ])
        
        # Risk management recommendations
        if 'risk_analysis' in metrics:
            risk = metrics['risk_analysis']
            if risk.get('total_risk', 0) > 0.7:
                recommendations.append(
                    "Consider reducing exposure to high-risk ventures"
                )
            if risk.get('correlation', 0) > 0.8:
                recommendations.append(
                    "Increase portfolio diversification to reduce correlation"
                )
        
        # Performance optimization recommendations
        if 'performance' in metrics:
            perf = metrics['performance']
            if perf.get('sharpe_ratio', 0) < 1.0:
                recommendations.append(
                    "Optimize risk-adjusted returns through better venture selection"
                )
            if perf.get('efficiency', 0) < 0.8:
                recommendations.append(
                    "Improve resource allocation efficiency across ventures"
                )
        
        return recommendations
    
    def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float:
        """Calculate confidence score based on optimization quality."""
        # Base confidence
        confidence = 0.5
        
        # Adjust based on optimization completeness
        if optimization_result.get('allocation'):
            confidence += 0.1
        if optimization_result.get('risk_analysis'):
            confidence += 0.1
        if optimization_result.get('performance_metrics'):
            confidence += 0.1
            
        # Adjust based on solution quality
        if optimization_result.get('convergence_status') == 'optimal':
            confidence += 0.2
        elif optimization_result.get('convergence_status') == 'suboptimal':
            confidence += 0.1
            
        return min(confidence, 1.0)
    
    def _format_strategy(
        self,
        optimization_result: Dict[str, Any],
        metrics: Dict[str, Any],
        recommendations: List[str]
    ) -> str:
        """Format optimization strategy into readable text."""
        sections = []
        
        # Portfolio allocation
        if 'allocation' in optimization_result:
            allocation = optimization_result['allocation']
            sections.append("Portfolio Allocation:")
            for alloc in allocation:
                sections.append(
                    f"- {alloc['venture']}: {alloc['percentage']:.1f}%"
                )
        
        # Key metrics
        if metrics:
            sections.append("\nKey Metrics:")
            for key, value in metrics.items():
                if isinstance(value, (int, float)):
                    sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
                else:
                    sections.append(f"- {key.replace('_', ' ').title()}: {value}")
        
        # Recommendations
        if recommendations:
            sections.append("\nKey Recommendations:")
            for rec in recommendations:
                sections.append(f"- {rec}")
        
        return "\n".join(sections)