File size: 15,369 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
"""Advanced market analysis tools for venture strategies."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class MarketSegment:
    """Market segment analysis."""
    size: float
    growth_rate: float
    cagr: float
    competition: List[Dict[str, Any]]
    barriers: List[str]
    opportunities: List[str]
    risks: List[str]

@dataclass
class CompetitorAnalysis:
    """Competitor analysis."""
    name: str
    market_share: float
    strengths: List[str]
    weaknesses: List[str]
    strategy: str
    revenue: Optional[float]
    valuation: Optional[float]

@dataclass
class MarketTrend:
    """Market trend analysis."""
    name: str
    impact: float
    timeline: str
    adoption_rate: float
    market_potential: float
    risk_level: float

class MarketAnalyzer:
    """
    Advanced market analysis toolkit that:
    1. Analyzes market segments
    2. Tracks competitors
    3. Identifies trends
    4. Predicts opportunities
    5. Assesses risks
    """
    
    def __init__(self):
        self.segments: Dict[str, MarketSegment] = {}
        self.competitors: Dict[str, CompetitorAnalysis] = {}
        self.trends: List[MarketTrend] = []
        
    async def analyze_market(self, 
                           segment: str,
                           context: Dict[str, Any]) -> Dict[str, Any]:
        """Perform comprehensive market analysis."""
        try:
            # Segment analysis
            segment_analysis = await self._analyze_segment(segment, context)
            
            # Competitor analysis
            competitor_analysis = await self._analyze_competitors(segment, context)
            
            # Trend analysis
            trend_analysis = await self._analyze_trends(segment, context)
            
            # Opportunity analysis
            opportunity_analysis = await self._analyze_opportunities(
                segment_analysis, competitor_analysis, trend_analysis, context)
            
            # Risk analysis
            risk_analysis = await self._analyze_risks(
                segment_analysis, competitor_analysis, trend_analysis, context)
            
            return {
                "success": True,
                "segment_analysis": segment_analysis,
                "competitor_analysis": competitor_analysis,
                "trend_analysis": trend_analysis,
                "opportunity_analysis": opportunity_analysis,
                "risk_analysis": risk_analysis,
                "metrics": {
                    "market_score": self._calculate_market_score(segment_analysis),
                    "opportunity_score": self._calculate_opportunity_score(opportunity_analysis),
                    "risk_score": self._calculate_risk_score(risk_analysis)
                }
            }
        except Exception as e:
            logging.error(f"Error in market analysis: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _analyze_segment(self,
                             segment: str,
                             context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze market segment."""
        prompt = f"""
        Analyze market segment:
        Segment: {segment}
        Context: {json.dumps(context)}
        
        Analyze:
        1. Market size and growth
        2. Customer segments
        3. Value chain
        4. Entry barriers
        5. Competitive dynamics
        
        Format as:
        [Analysis]
        Size: ...
        Growth: ...
        Segments: ...
        Value_Chain: ...
        Barriers: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_segment_analysis(response["answer"])

    async def _analyze_competitors(self,
                                 segment: str,
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze competitors in segment."""
        prompt = f"""
        Analyze competitors:
        Segment: {segment}
        Context: {json.dumps(context)}
        
        For each competitor analyze:
        1. Market share
        2. Business model
        3. Strengths/weaknesses
        4. Strategy
        5. Performance metrics
        
        Format as:
        [Competitor1]
        Share: ...
        Model: ...
        Strengths: ...
        Weaknesses: ...
        Strategy: ...
        Metrics: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_competitor_analysis(response["answer"])

    async def _analyze_trends(self,
                            segment: str,
                            context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze market trends."""
        prompt = f"""
        Analyze market trends:
        Segment: {segment}
        Context: {json.dumps(context)}
        
        Analyze trends in:
        1. Technology
        2. Customer behavior
        3. Business models
        4. Regulation
        5. Market dynamics
        
        Format as:
        [Trend1]
        Type: ...
        Impact: ...
        Timeline: ...
        Adoption: ...
        Potential: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_trend_analysis(response["answer"])

    async def _analyze_opportunities(self,
                                   segment_analysis: Dict[str, Any],
                                   competitor_analysis: Dict[str, Any],
                                   trend_analysis: Dict[str, Any],
                                   context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze market opportunities."""
        prompt = f"""
        Analyze market opportunities:
        Segment: {json.dumps(segment_analysis)}
        Competitors: {json.dumps(competitor_analysis)}
        Trends: {json.dumps(trend_analysis)}
        Context: {json.dumps(context)}
        
        Identify opportunities in:
        1. Unmet needs
        2. Market gaps
        3. Innovation potential
        4. Scaling potential
        5. Value creation
        
        Format as:
        [Opportunity1]
        Type: ...
        Description: ...
        Potential: ...
        Requirements: ...
        Timeline: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_opportunity_analysis(response["answer"])

    async def _analyze_risks(self,
                           segment_analysis: Dict[str, Any],
                           competitor_analysis: Dict[str, Any],
                           trend_analysis: Dict[str, Any],
                           context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze market risks."""
        prompt = f"""
        Analyze market risks:
        Segment: {json.dumps(segment_analysis)}
        Competitors: {json.dumps(competitor_analysis)}
        Trends: {json.dumps(trend_analysis)}
        Context: {json.dumps(context)}
        
        Analyze risks in:
        1. Market dynamics
        2. Competition
        3. Technology
        4. Regulation
        5. Execution
        
        Format as:
        [Risk1]
        Type: ...
        Description: ...
        Impact: ...
        Probability: ...
        Mitigation: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_risk_analysis(response["answer"])

    def _calculate_market_score(self, analysis: Dict[str, Any]) -> float:
        """Calculate market attractiveness score."""
        weights = {
            "size": 0.3,
            "growth": 0.3,
            "competition": 0.2,
            "barriers": 0.1,
            "dynamics": 0.1
        }
        
        scores = {
            "size": min(analysis.get("size", 0) / 1e9, 1.0),  # Normalize to 1B
            "growth": min(analysis.get("growth", 0) / 30, 1.0),  # Normalize to 30%
            "competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0),
            "barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0),
            "dynamics": analysis.get("dynamics_score", 0.5)
        }
        
        return sum(weights[k] * scores[k] for k in weights)

    def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float:
        """Calculate opportunity attractiveness score."""
        weights = {
            "market_potential": 0.3,
            "innovation_potential": 0.2,
            "execution_feasibility": 0.2,
            "competitive_advantage": 0.2,
            "timing": 0.1
        }
        
        scores = {
            "market_potential": analysis.get("market_potential", 0.5),
            "innovation_potential": analysis.get("innovation_potential", 0.5),
            "execution_feasibility": analysis.get("execution_feasibility", 0.5),
            "competitive_advantage": analysis.get("competitive_advantage", 0.5),
            "timing": analysis.get("timing_score", 0.5)
        }
        
        return sum(weights[k] * scores[k] for k in weights)

    def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float:
        """Calculate risk level score."""
        weights = {
            "market_risk": 0.2,
            "competition_risk": 0.2,
            "technology_risk": 0.2,
            "regulatory_risk": 0.2,
            "execution_risk": 0.2
        }
        
        scores = {
            "market_risk": analysis.get("market_risk", 0.5),
            "competition_risk": analysis.get("competition_risk", 0.5),
            "technology_risk": analysis.get("technology_risk", 0.5),
            "regulatory_risk": analysis.get("regulatory_risk", 0.5),
            "execution_risk": analysis.get("execution_risk", 0.5)
        }
        
        return sum(weights[k] * scores[k] for k in weights)

    def get_market_insights(self) -> Dict[str, Any]:
        """Get comprehensive market insights."""
        return {
            "segment_insights": {
                segment: {
                    "size": s.size,
                    "growth_rate": s.growth_rate,
                    "cagr": s.cagr,
                    "opportunity_score": self._calculate_market_score({
                        "size": s.size,
                        "growth": s.growth_rate,
                        "competitors": s.competition,
                        "barriers": s.barriers
                    })
                }
                for segment, s in self.segments.items()
            },
            "competitor_insights": {
                competitor: {
                    "market_share": c.market_share,
                    "strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)),
                    "revenue": c.revenue,
                    "valuation": c.valuation
                }
                for competitor, c in self.competitors.items()
            },
            "trend_insights": [
                {
                    "name": t.name,
                    "impact": t.impact,
                    "potential": t.market_potential,
                    "risk": t.risk_level
                }
                for t in self.trends
            ]
        }

class MarketAnalysisStrategy(ReasoningStrategy):
    """
    Advanced market analysis strategy that combines multiple analytical tools
    to provide comprehensive market insights.
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize market analysis strategy."""
        super().__init__()
        self.config = config or {}
        self.analyzer = MarketAnalyzer()
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Perform market analysis based on query and context.
        
        Args:
            query: The market analysis query
            context: Additional context and parameters
            
        Returns:
            Dict containing market analysis results and confidence scores
        """
        try:
            # Extract market segment from query/context
            segment = self._extract_segment(query, context)
            
            # Perform market analysis
            analysis = await self._analyze_market(segment, context)
            
            # Get insights
            insights = self.analyzer.get_market_insights()
            
            # Calculate confidence based on data quality and completeness
            confidence = self._calculate_confidence(analysis, insights)
            
            return {
                'answer': self._format_insights(insights),
                'confidence': confidence,
                'analysis': analysis,
                'insights': insights,
                'segment': segment
            }
            
        except Exception as e:
            logging.error(f"Market analysis failed: {str(e)}")
            return {
                'error': f"Market analysis failed: {str(e)}",
                'confidence': 0.0
            }
    
    def _extract_segment(self, query: str, context: Dict[str, Any]) -> str:
        """Extract market segment from query and context."""
        # Use context if available
        if 'segment' in context:
            return context['segment']
            
        # Default to general market
        return 'general'
    
    async def _analyze_market(self, segment: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Perform comprehensive market analysis."""
        return await self.analyzer.analyze_market(segment, context)
    
    def _calculate_confidence(self, analysis: Dict[str, Any], insights: Dict[str, Any]) -> float:
        """Calculate confidence score based on analysis quality."""
        # Base confidence
        confidence = 0.5
        
        # Adjust based on data completeness
        if analysis.get('segment_analysis'):
            confidence += 0.1
        if analysis.get('competitor_analysis'):
            confidence += 0.1
        if analysis.get('trend_analysis'):
            confidence += 0.1
            
        # Adjust based on insight quality
        if insights.get('opportunities'):
            confidence += 0.1
        if insights.get('risks'):
            confidence += 0.1
            
        return min(confidence, 1.0)
    
    def _format_insights(self, insights: Dict[str, Any]) -> str:
        """Format market insights into readable text."""
        sections = []
        
        if 'market_overview' in insights:
            sections.append(f"Market Overview: {insights['market_overview']}")
            
        if 'opportunities' in insights:
            opps = insights['opportunities']
            sections.append("Key Opportunities:\n- " + "\n- ".join(opps))
            
        if 'risks' in insights:
            risks = insights['risks']
            sections.append("Key Risks:\n- " + "\n- ".join(risks))
            
        if 'recommendations' in insights:
            recs = insights['recommendations']
            sections.append("Recommendations:\n- " + "\n- ".join(recs))
            
        return "\n\n".join(sections)