Spaces:
Runtime error
Runtime error
File size: 12,302 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
"""Specialized reasoning strategies for Agentic Workflow."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
from .base import ReasoningStrategy
class TaskType(Enum):
"""Types of tasks in agentic workflow."""
CODE_GENERATION = "code_generation"
CODE_MODIFICATION = "code_modification"
CODE_REVIEW = "code_review"
DEBUGGING = "debugging"
ARCHITECTURE = "architecture"
OPTIMIZATION = "optimization"
DOCUMENTATION = "documentation"
TESTING = "testing"
class ResourceType(Enum):
"""Types of resources in agentic workflow."""
CODE_CONTEXT = "code_context"
SYSTEM_CONTEXT = "system_context"
USER_CONTEXT = "user_context"
TOOLS = "tools"
APIS = "apis"
DOCUMENTATION = "documentation"
DEPENDENCIES = "dependencies"
HISTORY = "history"
@dataclass
class TaskComponent:
"""Component of a decomposed task."""
id: str
type: TaskType
description: str
dependencies: List[str]
resources: Dict[ResourceType, Any]
constraints: List[str]
priority: float
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ResourceAllocation:
"""Resource allocation for a task."""
resource_type: ResourceType
quantity: Union[int, float]
priority: float
constraints: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ExecutionStep:
"""Step in task execution."""
id: str
task_id: str
action: str
resources: Dict[ResourceType, Any]
status: str
result: Optional[Dict[str, Any]]
feedback: List[str]
timestamp: datetime = field(default_factory=datetime.now)
class TaskDecompositionStrategy(ReasoningStrategy):
"""
Advanced task decomposition strategy that:
1. Analyzes task complexity and dependencies
2. Breaks down tasks into manageable components
3. Identifies resource requirements
4. Establishes execution order
5. Manages constraints and priorities
"""
def __init__(self, max_components: int = 10):
self.max_components = max_components
self.components: Dict[str, TaskComponent] = {}
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Decompose task into components."""
try:
# Analyze task
task_analysis = await self._analyze_task(query, context)
# Generate components
components = await self._generate_components(task_analysis, context)
# Establish dependencies
dependency_graph = await self._establish_dependencies(components, context)
# Determine execution order
execution_order = await self._determine_execution_order(
components, dependency_graph, context)
return {
"success": True,
"components": [self._component_to_dict(c) for c in components],
"dependency_graph": dependency_graph,
"execution_order": execution_order,
"metadata": {
"total_components": len(components),
"complexity_score": task_analysis.get("complexity_score", 0.0),
"resource_requirements": task_analysis.get("resource_requirements", {})
}
}
except Exception as e:
logging.error(f"Error in task decomposition: {str(e)}")
return {"success": False, "error": str(e)}
class ResourceManagementStrategy(ReasoningStrategy):
"""
Advanced resource management strategy that:
1. Tracks available resources
2. Allocates resources to tasks
3. Handles resource constraints
4. Optimizes resource utilization
5. Manages resource dependencies
"""
def __init__(self):
self.allocations: Dict[str, ResourceAllocation] = {}
self.utilization_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Manage resource allocation."""
try:
# Analyze resource requirements
requirements = await self._analyze_requirements(query, context)
# Check resource availability
availability = await self._check_availability(requirements, context)
# Generate allocation plan
allocation_plan = await self._generate_allocation_plan(
requirements, availability, context)
# Optimize allocations
optimized_plan = await self._optimize_allocations(allocation_plan, context)
return {
"success": True,
"allocation_plan": optimized_plan,
"resource_metrics": {
"utilization": self._calculate_utilization(),
"efficiency": self._calculate_efficiency(),
"constraints_satisfied": self._check_constraints(optimized_plan)
}
}
except Exception as e:
logging.error(f"Error in resource management: {str(e)}")
return {"success": False, "error": str(e)}
class ContextualPlanningStrategy(ReasoningStrategy):
"""
Advanced contextual planning strategy that:
1. Analyzes multiple context types
2. Generates context-aware plans
3. Handles context changes
4. Maintains context consistency
5. Optimizes for context constraints
"""
def __init__(self):
self.context_history: List[Dict[str, Any]] = []
self.plan_adaptations: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate context-aware plan."""
try:
# Analyze contexts
context_analysis = await self._analyze_contexts(query, context)
# Generate base plan
base_plan = await self._generate_base_plan(context_analysis, context)
# Adapt to contexts
adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis)
# Validate plan
validation = await self._validate_plan(adapted_plan, context)
return {
"success": True,
"plan": adapted_plan,
"context_impact": context_analysis.get("impact_assessment", {}),
"adaptations": self.plan_adaptations,
"validation_results": validation
}
except Exception as e:
logging.error(f"Error in contextual planning: {str(e)}")
return {"success": False, "error": str(e)}
class AdaptiveExecutionStrategy(ReasoningStrategy):
"""
Advanced adaptive execution strategy that:
1. Monitors execution progress
2. Adapts to changes and feedback
3. Handles errors and exceptions
4. Optimizes execution flow
5. Maintains execution state
"""
def __init__(self):
self.execution_steps: List[ExecutionStep] = []
self.adaptation_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute task adaptively."""
try:
# Initialize execution
execution_state = await self._initialize_execution(query, context)
# Monitor and adapt
while not self._is_execution_complete(execution_state):
# Execute step
step_result = await self._execute_step(execution_state, context)
# Process feedback
feedback = await self._process_feedback(step_result, context)
# Adapt execution
execution_state = await self._adapt_execution(
execution_state, feedback, context)
# Record step
self._record_step(step_result, feedback)
return {
"success": True,
"execution_trace": [self._step_to_dict(s) for s in self.execution_steps],
"adaptations": self.adaptation_history,
"final_state": execution_state
}
except Exception as e:
logging.error(f"Error in adaptive execution: {str(e)}")
return {"success": False, "error": str(e)}
class FeedbackIntegrationStrategy(ReasoningStrategy):
"""
Advanced feedback integration strategy that:
1. Collects multiple types of feedback
2. Analyzes feedback patterns
3. Generates improvement suggestions
4. Tracks feedback implementation
5. Measures feedback impact
"""
def __init__(self):
self.feedback_history: List[Dict[str, Any]] = []
self.improvement_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Integrate and apply feedback."""
try:
# Collect feedback
feedback = await self._collect_feedback(query, context)
# Analyze patterns
patterns = await self._analyze_patterns(feedback, context)
# Generate improvements
improvements = await self._generate_improvements(patterns, context)
# Implement changes
implementation = await self._implement_improvements(improvements, context)
# Measure impact
impact = await self._measure_impact(implementation, context)
return {
"success": True,
"feedback_analysis": patterns,
"improvements": improvements,
"implementation_status": implementation,
"impact_metrics": impact
}
except Exception as e:
logging.error(f"Error in feedback integration: {str(e)}")
return {"success": False, "error": str(e)}
async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Collect feedback from multiple sources."""
prompt = f"""
Collect feedback from:
Query: {query}
Context: {json.dumps(context)}
Consider:
1. User feedback
2. System metrics
3. Code analysis
4. Performance data
5. Error patterns
Format as:
[Feedback]
Source: ...
Type: ...
Content: ...
Priority: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_feedback(response["answer"])
def _parse_feedback(self, response: str) -> List[Dict[str, Any]]:
"""Parse feedback from response."""
feedback_items = []
current = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[Feedback]'):
if current:
feedback_items.append(current)
current = {
"source": "",
"type": "",
"content": "",
"priority": 0.0
}
elif current:
if line.startswith('Source:'):
current["source"] = line[7:].strip()
elif line.startswith('Type:'):
current["type"] = line[5:].strip()
elif line.startswith('Content:'):
current["content"] = line[8:].strip()
elif line.startswith('Priority:'):
try:
current["priority"] = float(line[9:].strip())
except:
pass
if current:
feedback_items.append(current)
return feedback_items
|