File size: 16,813 Bytes
05c0fea
1d75522
 
 
 
 
 
 
 
 
 
a084fbc
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a084fbc
1d75522
 
 
 
 
 
 
a084fbc
 
1d75522
05c0fea
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
 
a084fbc
 
1d75522
a084fbc
 
1d75522
 
a084fbc
 
1d75522
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
 
a084fbc
1d75522
a084fbc
 
 
1d75522
a084fbc
 
1d75522
 
 
 
 
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
1d75522
 
a084fbc
 
 
 
1d75522
a084fbc
 
1d75522
a084fbc
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
a084fbc
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
a084fbc
1d75522
a084fbc
 
1d75522
 
 
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
1d75522
a084fbc
 
 
 
 
 
1d75522
 
a084fbc
1d75522
 
a084fbc
1d75522
 
 
a084fbc
 
 
 
 
 
 
1d75522
a084fbc
1d75522
a084fbc
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
a084fbc
 
 
 
 
1d75522
 
a084fbc
 
 
1d75522
 
 
 
 
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
a084fbc
 
 
 
 
1d75522
 
 
a084fbc
1d75522
 
a084fbc
1d75522
a084fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
a084fbc
 
 
 
 
 
 
1d75522
 
 
a084fbc
 
 
 
 
1d75522
a084fbc
 
1d75522
 
a084fbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""Recursive reasoning strategy implementation."""

import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict

from .base import ReasoningStrategy, StrategyResult

class SubproblemType(Enum):
    """Types of subproblems in recursive reasoning."""
    ATOMIC = "atomic"
    COMPOSITE = "composite"
    PARALLEL = "parallel"
    SEQUENTIAL = "sequential"
    CONDITIONAL = "conditional"
    ITERATIVE = "iterative"

class SolutionStatus(Enum):
    """Status of subproblem solutions."""
    PENDING = "pending"
    IN_PROGRESS = "in_progress"
    SOLVED = "solved"
    FAILED = "failed"
    BLOCKED = "blocked"
    OPTIMIZING = "optimizing"

@dataclass
class Subproblem:
    """Represents a subproblem in recursive reasoning."""
    id: str
    type: SubproblemType
    query: str
    context: Dict[str, Any]
    parent_id: Optional[str]
    children: List[str]
    status: SolutionStatus
    solution: Optional[Dict[str, Any]]
    confidence: float
    dependencies: List[str]
    metadata: Dict[str, Any] = field(default_factory=dict)
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

@dataclass
class RecursiveStep:
    """Represents a step in recursive reasoning."""
    id: str
    subproblem_id: str
    action: str
    result: Dict[str, Any]
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

class RecursiveStrategy(ReasoningStrategy):
    """Advanced recursive reasoning that:
    1. Breaks down complex problems
    2. Solves sub-problems recursively
    3. Combines solutions
    4. Handles base cases
    5. Optimizes performance
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize recursive reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.max_depth = self.config.get('max_depth', 5)
        self.optimization_rounds = self.config.get('optimization_rounds', 2)
        
        # Problem tracking
        self.subproblems: Dict[str, Subproblem] = {}
        self.steps: List[RecursiveStep] = []
        self.solution_cache: Dict[str, Dict[str, Any]] = {}
        self.cycle_detection: Set[str] = set()
        
        # Performance metrics
        self.performance_metrics = {
            'depth_distribution': defaultdict(int),
            'type_distribution': defaultdict(int),
            'success_rate': defaultdict(float),
            'total_subproblems': 0,
            'solved_subproblems': 0,
            'failed_subproblems': 0,
            'optimization_rounds': 0,
            'cache_hits': 0,
            'cycles_detected': 0
        }
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply recursive reasoning to analyze the query.
        
        Args:
            query: The query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing the reasoning output and metadata
        """
        try:
            # Initialize root problem
            root_problem = await self._initialize_problem(query, context)
            root_id = root_problem.id
            
            # Solve recursively
            solution = await self._solve_recursive(root_id, depth=0)
            
            # Optimize solution
            if solution and solution.get('success', False):
                solution = await self._optimize_solution(solution, root_problem, context)
            
            # Update metrics
            self._update_metrics(root_id)
            
            # Build solution trace
            solution_trace = self._get_solution_trace(root_id)
            
            # Calculate overall confidence
            confidence = self._calculate_confidence(solution_trace)
            
            return StrategyResult(
                strategy_type="recursive",
                success=bool(solution and solution.get('success', False)),
                answer=solution.get('answer') if solution else None,
                confidence=confidence,
                reasoning_trace=solution_trace,
                metadata={
                    'problem_tree': self._get_problem_tree(root_id),
                    'steps': [self._step_to_dict(step) for step in self.steps],
                    'solution_details': solution if solution else {}
                },
                performance_metrics=self.performance_metrics
            )
            
        except Exception as e:
            logging.error(f"Recursive reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="recursive",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    'step': 'error',
                    'error': str(e),
                    'timestamp': datetime.now().isoformat()
                }],
                metadata={'error': str(e)},
                performance_metrics=self.performance_metrics
            )
    
    async def _initialize_problem(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> Subproblem:
        """Initialize the root problem."""
        problem = Subproblem(
            id="root",
            type=SubproblemType.COMPOSITE,
            query=query,
            context=context,
            parent_id=None,
            children=[],
            status=SolutionStatus.PENDING,
            solution=None,
            confidence=1.0,
            dependencies=[],
            metadata={'depth': 0}
        )
        
        self.subproblems[problem.id] = problem
        self._record_step(RecursiveStep(
            id=f"init_{problem.id}",
            subproblem_id=problem.id,
            action="initialize",
            result={'type': problem.type.value, 'query': query}
        ))
        
        return problem
    
    async def _solve_recursive(
        self,
        problem_id: str,
        depth: int
    ) -> Optional[Dict[str, Any]]:
        """Recursively solve a problem and its subproblems."""
        if depth > self.max_depth:
            return None
            
        problem = self.subproblems[problem_id]
        
        # Check cycle
        if problem_id in self.cycle_detection:
            self.performance_metrics['cycles_detected'] += 1
            return None
            
        self.cycle_detection.add(problem_id)
        
        try:
            # Check cache
            if problem_id in self.solution_cache:
                self.performance_metrics['cache_hits'] += 1
                return self.solution_cache[problem_id]
            
            # Decompose if composite
            if problem.type != SubproblemType.ATOMIC:
                await self._decompose_problem(problem, problem.context)
            
            # Solve atomic problem
            if problem.type == SubproblemType.ATOMIC:
                solution = await self._solve_atomic(problem)
                if solution:
                    problem.solution = solution
                    problem.status = SolutionStatus.SOLVED
                    return solution
                else:
                    problem.status = SolutionStatus.FAILED
                    return None
            
            # Solve subproblems
            subsolutions = []
            for child_id in problem.children:
                child_solution = await self._solve_recursive(child_id, depth + 1)
                if child_solution:
                    subsolutions.append(child_solution)
            
            # Synthesize solutions
            if subsolutions:
                solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
                if solution:
                    problem.solution = solution
                    problem.status = SolutionStatus.SOLVED
                    self.solution_cache[problem_id] = solution
                    return solution
            
            problem.status = SolutionStatus.FAILED
            return None
            
        finally:
            self.cycle_detection.remove(problem_id)
    
    async def _decompose_problem(
        self,
        problem: Subproblem,
        context: Dict[str, Any]
    ) -> None:
        """Decompose a problem into subproblems."""
        subproblems = self._generate_subproblems(problem, context)
        
        for subproblem in subproblems:
            self.subproblems[subproblem.id] = subproblem
            problem.children.append(subproblem.id)
            
        self._record_step(RecursiveStep(
            id=f"decompose_{problem.id}",
            subproblem_id=problem.id,
            action="decompose",
            result={'num_subproblems': len(subproblems)}
        ))
    
    def _generate_subproblems(
        self,
        parent: Subproblem,
        context: Dict[str, Any]
    ) -> List[Subproblem]:
        """Generate subproblems for a composite problem."""
        # This is a placeholder implementation
        # In practice, this would use more sophisticated decomposition
        subproblems = []
        
        # Example: Split into 2-3 subproblems
        parts = parent.query.split('.')[:3]
        for i, part in enumerate(parts):
            if part.strip():
                subproblem = Subproblem(
                    id=f"{parent.id}_sub{i}",
                    type=SubproblemType.ATOMIC,
                    query=part.strip(),
                    context=context,
                    parent_id=parent.id,
                    children=[],
                    status=SolutionStatus.PENDING,
                    solution=None,
                    confidence=0.0,
                    dependencies=[],
                    metadata={'depth': parent.metadata['depth'] + 1}
                )
                subproblems.append(subproblem)
        
        return subproblems
    
    async def _solve_atomic(
        self,
        problem: Subproblem
    ) -> Optional[Dict[str, Any]]:
        """Solve an atomic problem."""
        # This is a placeholder implementation
        # In practice, this would use more sophisticated solving strategies
        solution = {
            'success': True,
            'answer': f"Solution for {problem.query}",
            'confidence': 0.8
        }
        
        self._record_step(RecursiveStep(
            id=f"solve_{problem.id}",
            subproblem_id=problem.id,
            action="solve_atomic",
            result=solution
        ))
        
        return solution
    
    async def _synthesize_solutions(
        self,
        subsolutions: List[Dict[str, Any]],
        problem: Subproblem,
        context: Dict[str, Any]
    ) -> Optional[Dict[str, Any]]:
        """Synthesize solutions from subproblems."""
        if not subsolutions:
            return None
            
        # Combine answers
        combined_answer = " ".join(
            sol['answer'] for sol in subsolutions if sol.get('answer')
        )
        
        # Average confidence
        avg_confidence = sum(
            sol['confidence'] for sol in subsolutions
        ) / len(subsolutions)
        
        synthesis = {
            'success': True,
            'answer': combined_answer,
            'confidence': avg_confidence,
            'subsolutions': subsolutions
        }
        
        self._record_step(RecursiveStep(
            id=f"synthesize_{problem.id}",
            subproblem_id=problem.id,
            action="synthesize",
            result={'num_solutions': len(subsolutions)}
        ))
        
        return synthesis
    
    async def _optimize_solution(
        self,
        solution: Dict[str, Any],
        problem: Subproblem,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Optimize the final solution."""
        optimized = solution.copy()
        
        for _ in range(self.optimization_rounds):
            self.performance_metrics['optimization_rounds'] += 1
            
            # Example optimization: Improve confidence
            if optimized['confidence'] < 0.9:
                optimized['confidence'] *= 1.1
        
        self._record_step(RecursiveStep(
            id=f"optimize_{problem.id}",
            subproblem_id=problem.id,
            action="optimize",
            result={'confidence_improvement': optimized['confidence'] - solution['confidence']}
        ))
        
        return optimized
    
    def _calculate_confidence(
        self,
        solution_trace: List[Dict[str, Any]]
    ) -> float:
        """Calculate overall confidence from solution trace."""
        if not solution_trace:
            return 0.0
            
        confidences = [
            step.get('confidence', 0.0)
            for step in solution_trace
            if isinstance(step.get('confidence'), (int, float))
        ]
        
        return sum(confidences) / len(confidences) if confidences else 0.0
    
    def _update_metrics(self, root_id: str) -> None:
        """Update performance metrics."""
        def update_recursive(problem_id: str):
            problem = self.subproblems[problem_id]
            depth = problem.metadata.get('depth', 0)
            
            self.performance_metrics['depth_distribution'][depth] += 1
            self.performance_metrics['type_distribution'][problem.type] += 1
            self.performance_metrics['total_subproblems'] += 1
            
            if problem.status == SolutionStatus.SOLVED:
                self.performance_metrics['solved_subproblems'] += 1
            elif problem.status == SolutionStatus.FAILED:
                self.performance_metrics['failed_subproblems'] += 1
            
            for child_id in problem.children:
                update_recursive(child_id)
        
        update_recursive(root_id)
        
        # Calculate success rates
        total = self.performance_metrics['total_subproblems']
        if total > 0:
            for problem_type in SubproblemType:
                type_count = self.performance_metrics['type_distribution'][problem_type]
                if type_count > 0:
                    success_count = sum(
                        1 for p in self.subproblems.values()
                        if p.type == problem_type and p.status == SolutionStatus.SOLVED
                    )
                    self.performance_metrics['success_rate'][problem_type] = success_count / type_count
    
    def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
        """Get the problem decomposition tree."""
        def build_tree(problem_id: str) -> Dict[str, Any]:
            problem = self.subproblems[problem_id]
            return {
                'id': problem.id,
                'type': problem.type.value,
                'status': problem.status.value,
                'confidence': problem.confidence,
                'children': [build_tree(child_id) for child_id in problem.children]
            }
        
        return build_tree(root_id)
    
    def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
        """Get the solution trace for a problem."""
        trace = []
        
        def build_trace(problem_id: str):
            problem = self.subproblems[problem_id]
            
            step = {
                'id': problem.id,
                'type': problem.type.value,
                'status': problem.status.value,
                'confidence': problem.confidence,
                'timestamp': problem.timestamp
            }
            
            if problem.solution:
                step.update(problem.solution)
            
            trace.append(step)
            
            for child_id in problem.children:
                build_trace(child_id)
        
        build_trace(root_id)
        return trace
    
    def _record_step(self, step: RecursiveStep) -> None:
        """Record a reasoning step."""
        self.steps.append(step)
    
    def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
        """Convert step to dictionary for serialization."""
        return {
            'id': step.id,
            'subproblem_id': step.subproblem_id,
            'action': step.action,
            'result': step.result,
            'timestamp': step.timestamp
        }
    
    def clear_cache(self) -> None:
        """Clear solution cache."""
        self.solution_cache.clear()
        self.performance_metrics['cache_hits'] = 0