File size: 10,000 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
bb6f0d3
1d75522
 
 
 
 
 
 
 
 
 
bb6f0d3
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6f0d3
 
 
1d75522
bb6f0d3
 
 
 
 
1d75522
 
 
 
 
 
 
 
bb6f0d3
1d75522
 
bb6f0d3
 
1d75522
bb6f0d3
 
1d75522
 
bb6f0d3
1d75522
 
 
 
bb6f0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
bb6f0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
bb6f0d3
1d75522
 
bb6f0d3
1d75522
bb6f0d3
 
 
 
 
 
 
 
 
 
 
1d75522
 
 
 
 
bb6f0d3
1d75522
 
 
 
bb6f0d3
1d75522
 
bb6f0d3
 
 
 
 
 
 
 
1d75522
 
 
 
 
bb6f0d3
1d75522
 
 
 
 
 
 
 
 
 
bb6f0d3
1d75522
bb6f0d3
1d75522
bb6f0d3
 
 
 
1d75522
bb6f0d3
 
 
 
 
 
1d75522
 
 
bb6f0d3
1d75522
bb6f0d3
1d75522
 
 
bb6f0d3
 
 
1d75522
bb6f0d3
 
 
1d75522
bb6f0d3
1d75522
 
 
 
 
 
 
bb6f0d3
 
 
 
 
 
1d75522
bb6f0d3
 
 
 
 
 
 
1d75522
bb6f0d3
1d75522
 
 
bb6f0d3
1d75522
bb6f0d3
 
 
 
 
1d75522
bb6f0d3
 
 
 
 
1d75522
bb6f0d3
1d75522
 
 
 
 
 
bb6f0d3
 
 
1d75522
bb6f0d3
 
 
 
 
 
 
 
 
1d75522
bb6f0d3
1d75522
 
 
bb6f0d3
 
 
 
1d75522
bb6f0d3
1d75522
bb6f0d3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
"""Advanced Bayesian reasoning for probabilistic analysis."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy, StrategyResult

@dataclass
class BayesianHypothesis:
    """Bayesian hypothesis with probabilities."""
    name: str
    prior: float
    likelihood: float
    posterior: float = 0.0
    evidence: List[Dict[str, Any]] = field(default_factory=list)

class BayesianStrategy(ReasoningStrategy):
    """Advanced Bayesian reasoning that:
    1. Generates hypotheses
    2. Calculates prior probabilities
    3. Updates with evidence
    4. Computes posteriors
    5. Provides probabilistic analysis
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize Bayesian reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Configure Bayesian parameters
        self.prior_weight = self.config.get('prior_weight', 0.3)
        self.evidence_threshold = self.config.get('evidence_threshold', 0.1)
        self.min_likelihood = self.config.get('min_likelihood', 0.01)
        
        # Initialize hypothesis storage
        self.hypotheses: List[BayesianHypothesis] = []
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply Bayesian reasoning to analyze probabilities and update beliefs.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing reasoning results and confidence scores
        """
        try:
            # Generate initial hypotheses
            self.hypotheses = await self._generate_hypotheses(query, context)
            
            # Calculate prior probabilities
            priors = await self._calculate_priors(self.hypotheses, context)
            
            # Update with evidence
            posteriors = await self._update_with_evidence(self.hypotheses, priors, context)
            
            # Generate analysis
            analysis = await self._generate_analysis(posteriors, context)
            
            # Format results
            answer = self._format_analysis(analysis)
            confidence = self._calculate_confidence(posteriors)
            
            return StrategyResult(
                strategy_type="bayesian",
                success=True,
                answer=answer,
                confidence=confidence,
                reasoning_trace=[{
                    "step": "bayesian_analysis",
                    "hypotheses": [h.__dict__ for h in self.hypotheses],
                    "priors": priors,
                    "posteriors": posteriors,
                    "analysis": analysis,
                    "timestamp": datetime.now().isoformat()
                }],
                metadata={
                    "num_hypotheses": len(self.hypotheses),
                    "max_posterior": max(posteriors.values()) if posteriors else 0.0,
                    "config": self.config
                },
                performance_metrics={
                    "prior_weight": self.prior_weight,
                    "evidence_threshold": self.evidence_threshold,
                    "min_likelihood": self.min_likelihood
                }
            )
            
        except Exception as e:
            logging.error(f"Bayesian reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="bayesian",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    "step": "error",
                    "error": str(e),
                    "timestamp": datetime.now().isoformat()
                }],
                metadata={"error": str(e)},
                performance_metrics={}
            )
    
    async def _generate_hypotheses(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[BayesianHypothesis]:
        """Generate plausible hypotheses."""
        # Extract key terms for hypothesis generation
        terms = self._extract_factors(query, set())
        
        # Generate alternative hypotheses
        alternatives = self._generate_alternative_factors(terms)
        
        # Create hypothesis objects
        hypotheses = []
        for name, prior in alternatives.items():
            hypotheses.append(BayesianHypothesis(
                name=name,
                prior=prior,
                likelihood=1.0  # Initial likelihood
            ))
        
        return hypotheses
    
    async def _calculate_priors(
        self,
        hypotheses: List[BayesianHypothesis],
        context: Dict[str, Any]
    ) -> Dict[str, float]:
        """Calculate prior probabilities."""
        priors = {}
        total_prior = sum(h.prior for h in hypotheses)
        
        if total_prior > 0:
            # Normalize priors
            for h in hypotheses:
                priors[h.name] = h.prior / total_prior
        else:
            # Equal priors if no information
            prior = 1.0 / len(hypotheses)
            for h in hypotheses:
                priors[h.name] = prior
        
        return priors
    
    async def _update_with_evidence(
        self,
        hypotheses: List[BayesianHypothesis],
        priors: Dict[str, float],
        context: Dict[str, Any]
    ) -> Dict[str, float]:
        """Update probabilities with evidence."""
        posteriors = priors.copy()
        
        # Get evidence from context
        evidence = context.get('evidence', [])
        
        for e in evidence:
            # Calculate likelihoods
            likelihoods = {}
            total_likelihood = 0.0
            
            for h in hypotheses:
                likelihood = await self._calculate_likelihood(h, e)
                likelihoods[h.name] = max(likelihood, self.min_likelihood)
                total_likelihood += likelihood * posteriors[h.name]
            
            # Update posteriors using Bayes' rule
            if total_likelihood > 0:
                for h in hypotheses:
                    posteriors[h.name] = (
                        likelihoods[h.name] * posteriors[h.name] / total_likelihood
                    )
        
        return posteriors
    
    async def _calculate_likelihood(
        self,
        hypothesis: BayesianHypothesis,
        evidence: Dict[str, Any]
    ) -> float:
        """Calculate likelihood of evidence given hypothesis."""
        # Simple likelihood calculation
        # Could be enhanced with more sophisticated methods
        base_likelihood = 0.5
        
        # Adjust based on evidence strength
        strength = evidence.get('strength', 0.0)
        likelihood = base_likelihood * (1 + strength)
        
        return min(1.0, max(self.min_likelihood, likelihood))
    
    async def _generate_analysis(
        self,
        posteriors: Dict[str, float],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Generate probabilistic analysis."""
        analysis = {
            'top_hypothesis': max(posteriors.items(), key=lambda x: x[1]),
            'confidence': self._calculate_confidence(posteriors),
            'distribution': posteriors,
            'summary': []
        }
        
        # Generate summary points
        for name, prob in sorted(posteriors.items(), key=lambda x: x[1], reverse=True):
            analysis['summary'].append({
                'hypothesis': name,
                'probability': prob,
                'strength': 'strong' if prob > 0.7 else 'moderate' if prob > 0.3 else 'weak'
            })
        
        return analysis
    
    def _format_analysis(self, analysis: Dict[str, Any]) -> str:
        """Format analysis into readable text."""
        top_hyp, top_prob = analysis['top_hypothesis']
        
        text = [
            f"Based on Bayesian analysis:",
            f"- Most likely hypothesis: {top_hyp} (probability: {top_prob:.2f})",
            "\nProbability distribution:"
        ]
        
        for item in analysis['summary']:
            text.append(
                f"- {item['hypothesis']}: {item['probability']:.2f} "
                f"({item['strength']} evidence)"
            )
        
        return "\n".join(text)
    
    def _calculate_confidence(self, posteriors: Dict[str, float]) -> float:
        """Calculate overall confidence score."""
        if not posteriors:
            return 0.0
        
        # Get top two probabilities
        probs = sorted(posteriors.values(), reverse=True)
        top_prob = probs[0]
        
        if len(probs) > 1:
            # Consider the gap between top hypotheses
            second_prob = probs[1]
            margin = top_prob - second_prob
            
            # Confidence increases with both probability and margin
            confidence = (top_prob + margin) / 2
        else:
            confidence = top_prob
        
        return min(1.0, max(0.0, confidence))
    
    def _extract_factors(self, text: str, terms: Set[str]) -> Set[str]:
        """Extract relevant factors from text."""
        # Simple word-based extraction
        # Could be enhanced with NLP techniques
        words = text.lower().split()
        return set(words).union(terms)
    
    def _generate_alternative_factors(self, terms: Set[str]) -> Dict[str, float]:
        """Generate factors for alternative hypothesis."""
        # Simple alternative generation
        # Could be enhanced with domain knowledge
        alternatives = {
            'primary': 0.6,
            'alternative': 0.3,
            'null': 0.1
        }
        
        return alternatives