Spaces:
Runtime error
Runtime error
File size: 11,659 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
Multi-Modal Reasoning Implementation
----------------------------------
Implements reasoning across different types of information.
"""
import logging
from typing import Dict, Any, List, Optional
from datetime import datetime
import json
import numpy as np
from .reasoning import ReasoningStrategy
class MultiModalReasoning(ReasoningStrategy):
"""Implements multi-modal reasoning across different types of information."""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize multi-modal reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Multi-modal specific parameters
self.modality_weights = self.config.get('modality_weights', {
'text': 0.8,
'image': 0.7,
'audio': 0.6,
'video': 0.5,
'structured': 0.7
})
self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6)
self.integration_steps = self.config.get('integration_steps', 3)
self.alignment_method = self.config.get('alignment_method', 'attention')
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Process different modalities
modalities = await self._process_modalities(query, context)
# Align across modalities
alignment = await self._cross_modal_alignment(modalities, context)
# Integrated analysis
integration = await self._integrated_analysis(alignment, context)
# Generate final response
response = await self._generate_response(integration, context)
return {
"success": True,
"answer": response["conclusion"],
"modalities": modalities,
"alignment": alignment,
"integration": integration,
"confidence": response["confidence"]
}
except Exception as e:
logging.error(f"Error in multi-modal reasoning: {str(e)}")
return {"success": False, "error": str(e)}
async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
"""Process query across different modalities."""
prompt = f"""
Process query across modalities:
Query: {query}
Context: {json.dumps(context)}
For each modality extract:
1. [Type]: Modality type
2. [Content]: Relevant content
3. [Features]: Key features
4. [Quality]: Content quality
Format as:
[M1]
Type: ...
Content: ...
Features: ...
Quality: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_modalities(response["answer"])
async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Align information across different modalities."""
try:
# Extract modality types
modal_types = list(modalities.keys())
# Initialize alignment results
alignments = []
# Process each modality pair
for i in range(len(modal_types)):
for j in range(i + 1, len(modal_types)):
type1, type2 = modal_types[i], modal_types[j]
# Get items from each modality
items1 = modalities[type1]
items2 = modalities[type2]
# Find alignments between items
for item1 in items1:
for item2 in items2:
similarity = self._calculate_similarity(item1, item2)
if similarity > self.cross_modal_threshold: # Threshold for alignment
alignments.append({
"type1": type1,
"type2": type2,
"item1": item1,
"item2": item2,
"similarity": similarity
})
# Sort alignments by similarity
alignments.sort(key=lambda x: x["similarity"], reverse=True)
return alignments
except Exception as e:
logging.error(f"Error in cross-modal alignment: {str(e)}")
return []
def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
"""Calculate similarity between two items from different modalities."""
try:
# Extract content from items
content1 = str(item1.get("content", ""))
content2 = str(item2.get("content", ""))
# Calculate basic similarity (can be enhanced with more sophisticated methods)
common_words = set(content1.lower().split()) & set(content2.lower().split())
total_words = set(content1.lower().split()) | set(content2.lower().split())
if not total_words:
return 0.0
return len(common_words) / len(total_words)
except Exception as e:
logging.error(f"Error calculating similarity: {str(e)}")
return 0.0
async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
prompt = f"""
Perform integrated multi-modal analysis:
Alignment: {json.dumps(alignment)}
Context: {json.dumps(context)}
For each insight:
1. [Insight]: Key finding
2. [Sources]: Contributing modalities
3. [Support]: Supporting evidence
4. [Confidence]: Confidence level
Format as:
[I1]
Insight: ...
Sources: ...
Support: ...
Confidence: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_integration(response["answer"])
async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
prompt = f"""
Generate unified multi-modal response:
Integration: {json.dumps(integration)}
Context: {json.dumps(context)}
Provide:
1. Main conclusion
2. Modal contributions
3. Integration benefits
4. Confidence level (0-1)
"""
response = await context["groq_api"].predict(prompt)
return self._parse_response(response["answer"])
def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
"""Parse modalities from response."""
modalities = {}
current_modality = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[M'):
if current_modality:
if current_modality["type"] not in modalities:
modalities[current_modality["type"]] = []
modalities[current_modality["type"]].append(current_modality)
current_modality = {
"type": "",
"content": "",
"features": "",
"quality": ""
}
elif current_modality:
if line.startswith('Type:'):
current_modality["type"] = line[5:].strip()
elif line.startswith('Content:'):
current_modality["content"] = line[8:].strip()
elif line.startswith('Features:'):
current_modality["features"] = line[9:].strip()
elif line.startswith('Quality:'):
current_modality["quality"] = line[8:].strip()
if current_modality:
if current_modality["type"] not in modalities:
modalities[current_modality["type"]] = []
modalities[current_modality["type"]].append(current_modality)
return modalities
def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
"""Parse integration from response."""
integration = []
current_insight = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[I'):
if current_insight:
integration.append(current_insight)
current_insight = {
"insight": "",
"sources": "",
"support": "",
"confidence": 0.0
}
elif current_insight:
if line.startswith('Insight:'):
current_insight["insight"] = line[8:].strip()
elif line.startswith('Sources:'):
current_insight["sources"] = line[8:].strip()
elif line.startswith('Support:'):
current_insight["support"] = line[8:].strip()
elif line.startswith('Confidence:'):
try:
current_insight["confidence"] = float(line[11:].strip())
except:
pass
if current_insight:
integration.append(current_insight)
return integration
def _parse_response(self, response: str) -> Dict[str, Any]:
"""Parse response from response."""
response_dict = {
"conclusion": "",
"modal_contributions": [],
"integration_benefits": [],
"confidence": 0.0
}
mode = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('Conclusion:'):
response_dict["conclusion"] = line[11:].strip()
elif line.startswith('Modal Contributions:'):
mode = "modal"
elif line.startswith('Integration Benefits:'):
mode = "integration"
elif line.startswith('Confidence:'):
try:
response_dict["confidence"] = float(line[11:].strip())
except:
response_dict["confidence"] = 0.5
mode = None
elif mode == "modal" and line.startswith('- '):
response_dict["modal_contributions"].append(line[2:].strip())
elif mode == "integration" and line.startswith('- '):
response_dict["integration_benefits"].append(line[2:].strip())
return response_dict
|