Spaces:
Runtime error
Runtime error
File size: 14,696 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
"""
Meta-Learning System
------------------
Implements meta-learning capabilities for improved learning and adaptation.
"""
from typing import Dict, Any, List, Optional, Tuple
import numpy as np
from dataclasses import dataclass, field
import logging
from datetime import datetime
from enum import Enum
import json
from quantum_learning import QuantumLearningSystem, Pattern, PatternType
class LearningStrategy(Enum):
GRADIENT_BASED = "gradient_based"
MEMORY_BASED = "memory_based"
EVOLUTIONARY = "evolutionary"
REINFORCEMENT = "reinforcement"
QUANTUM = "quantum"
@dataclass
class MetaParameters:
"""Meta-parameters for learning strategies"""
learning_rate: float = 0.01
memory_size: int = 1000
evolution_rate: float = 0.1
exploration_rate: float = 0.2
quantum_interference: float = 0.5
adaptation_threshold: float = 0.7
@dataclass
class LearningMetrics:
"""Metrics for learning performance"""
accuracy: float
convergence_rate: float
adaptation_speed: float
resource_usage: float
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
class MetaLearningSystem:
"""Meta-learning system for optimizing learning strategies"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
self.logger = logging.getLogger(__name__)
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Initialize quantum system with shared config
quantum_config = {
'min_confidence': self.min_confidence,
'parallel_threshold': self.parallel_threshold,
'learning_rate': self.learning_rate,
'strategy_weights': self.strategy_weights,
'num_qubits': self.config.get('num_qubits', 8),
'entanglement_strength': self.config.get('entanglement_strength', 0.5),
'interference_threshold': self.config.get('interference_threshold', 0.3),
'tunneling_rate': self.config.get('tunneling_rate', 0.1),
'annealing_schedule': self.config.get('annealing_schedule', {
'initial_temp': 1.0,
'final_temp': 0.01,
'steps': 100,
'cooling_rate': 0.95
})
}
self.quantum_system = QuantumLearningSystem(quantum_config)
self.strategies = {}
self.performance_history = []
self.meta_parameters = MetaParameters()
async def optimize_learning(
self,
observation: Dict[str, Any],
current_strategy: LearningStrategy
) -> Tuple[Dict[str, Any], LearningMetrics]:
"""Optimize learning strategy based on observation"""
try:
# Process with quantum system
quantum_result = await self.quantum_system.process_observation(observation)
# Evaluate current strategy
current_metrics = self._evaluate_strategy(
current_strategy,
observation,
quantum_result
)
# Update performance history
self._update_performance_history(current_metrics)
# Adapt meta-parameters
self._adapt_meta_parameters(current_metrics)
# Select optimal strategy
optimal_strategy = self._select_optimal_strategy(
observation,
current_metrics
)
# Apply selected strategy
result = await self._apply_strategy(
optimal_strategy,
observation,
quantum_result
)
return result, current_metrics
except Exception as e:
self.logger.error(f"Failed to optimize learning: {str(e)}")
raise
def _evaluate_strategy(
self,
strategy: LearningStrategy,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> LearningMetrics:
"""Evaluate performance of current learning strategy"""
# Calculate accuracy
accuracy = self._calculate_accuracy(
strategy,
observation,
quantum_result
)
# Calculate convergence rate
convergence_rate = self._calculate_convergence_rate(
strategy,
self.performance_history
)
# Calculate adaptation speed
adaptation_speed = self._calculate_adaptation_speed(
strategy,
observation
)
# Calculate resource usage
resource_usage = self._calculate_resource_usage(strategy)
return LearningMetrics(
accuracy=accuracy,
convergence_rate=convergence_rate,
adaptation_speed=adaptation_speed,
resource_usage=resource_usage
)
def _update_performance_history(
self,
metrics: LearningMetrics
) -> None:
"""Update performance history with new metrics"""
self.performance_history.append(metrics)
# Maintain history size
if len(self.performance_history) > self.meta_parameters.memory_size:
self.performance_history.pop(0)
def _adapt_meta_parameters(
self,
metrics: LearningMetrics
) -> None:
"""Adapt meta-parameters based on performance metrics"""
# Adjust learning rate
if metrics.convergence_rate < self.meta_parameters.adaptation_threshold:
self.meta_parameters.learning_rate *= 0.9
else:
self.meta_parameters.learning_rate *= 1.1
# Adjust memory size
if metrics.resource_usage > 0.8:
self.meta_parameters.memory_size = int(
self.meta_parameters.memory_size * 0.9
)
elif metrics.resource_usage < 0.2:
self.meta_parameters.memory_size = int(
self.meta_parameters.memory_size * 1.1
)
# Adjust evolution rate
if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold:
self.meta_parameters.evolution_rate *= 1.1
else:
self.meta_parameters.evolution_rate *= 0.9
# Adjust exploration rate
if metrics.accuracy < self.meta_parameters.adaptation_threshold:
self.meta_parameters.exploration_rate *= 1.1
else:
self.meta_parameters.exploration_rate *= 0.9
# Adjust quantum interference
if metrics.accuracy > 0.8:
self.meta_parameters.quantum_interference *= 1.1
else:
self.meta_parameters.quantum_interference *= 0.9
# Ensure parameters stay within reasonable bounds
self._normalize_parameters()
def _normalize_parameters(self) -> None:
"""Normalize meta-parameters to stay within bounds"""
self.meta_parameters.learning_rate = np.clip(
self.meta_parameters.learning_rate,
0.001,
0.1
)
self.meta_parameters.memory_size = np.clip(
self.meta_parameters.memory_size,
100,
10000
)
self.meta_parameters.evolution_rate = np.clip(
self.meta_parameters.evolution_rate,
0.01,
0.5
)
self.meta_parameters.exploration_rate = np.clip(
self.meta_parameters.exploration_rate,
0.1,
0.9
)
self.meta_parameters.quantum_interference = np.clip(
self.meta_parameters.quantum_interference,
0.1,
0.9
)
def _select_optimal_strategy(
self,
observation: Dict[str, Any],
metrics: LearningMetrics
) -> LearningStrategy:
"""Select optimal learning strategy"""
strategies = list(LearningStrategy)
scores = []
for strategy in strategies:
# Calculate strategy score
score = self._calculate_strategy_score(
strategy,
observation,
metrics
)
scores.append((strategy, score))
# Select strategy with highest score
optimal_strategy = max(scores, key=lambda x: x[1])[0]
return optimal_strategy
async def _apply_strategy(
self,
strategy: LearningStrategy,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Apply selected learning strategy"""
if strategy == LearningStrategy.GRADIENT_BASED:
return await self._apply_gradient_strategy(
observation,
quantum_result
)
elif strategy == LearningStrategy.MEMORY_BASED:
return await self._apply_memory_strategy(
observation,
quantum_result
)
elif strategy == LearningStrategy.EVOLUTIONARY:
return await self._apply_evolutionary_strategy(
observation,
quantum_result
)
elif strategy == LearningStrategy.REINFORCEMENT:
return await self._apply_reinforcement_strategy(
observation,
quantum_result
)
else: # QUANTUM
return quantum_result
def _calculate_accuracy(
self,
strategy: LearningStrategy,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> float:
"""Calculate accuracy of learning strategy"""
if "patterns" not in quantum_result:
return 0.0
patterns = quantum_result["patterns"]
if not patterns:
return 0.0
# Calculate pattern confidence
confidence_sum = sum(pattern.confidence for pattern in patterns)
return confidence_sum / len(patterns)
def _calculate_convergence_rate(
self,
strategy: LearningStrategy,
history: List[LearningMetrics]
) -> float:
"""Calculate convergence rate of learning strategy"""
if not history:
return 0.0
# Calculate rate of improvement
accuracies = [metrics.accuracy for metrics in history[-10:]]
if len(accuracies) < 2:
return 0.0
differences = np.diff(accuracies)
return float(np.mean(differences > 0))
def _calculate_adaptation_speed(
self,
strategy: LearningStrategy,
observation: Dict[str, Any]
) -> float:
"""Calculate adaptation speed of learning strategy"""
if not self.performance_history:
return 0.0
# Calculate time to reach adaptation threshold
threshold = self.meta_parameters.adaptation_threshold
for i, metrics in enumerate(self.performance_history):
if metrics.accuracy >= threshold:
return 1.0 / (i + 1)
return 0.0
def _calculate_resource_usage(
self,
strategy: LearningStrategy
) -> float:
"""Calculate resource usage of learning strategy"""
# Simulate resource usage based on strategy
base_usage = {
LearningStrategy.GRADIENT_BASED: 0.4,
LearningStrategy.MEMORY_BASED: 0.6,
LearningStrategy.EVOLUTIONARY: 0.7,
LearningStrategy.REINFORCEMENT: 0.5,
LearningStrategy.QUANTUM: 0.8
}
return base_usage[strategy]
def _calculate_strategy_score(
self,
strategy: LearningStrategy,
observation: Dict[str, Any],
metrics: LearningMetrics
) -> float:
"""Calculate score for learning strategy"""
# Weight different factors
weights = {
"accuracy": 0.4,
"convergence": 0.2,
"adaptation": 0.2,
"resources": 0.2
}
score = (
weights["accuracy"] * metrics.accuracy +
weights["convergence"] * metrics.convergence_rate +
weights["adaptation"] * metrics.adaptation_speed +
weights["resources"] * (1 - metrics.resource_usage)
)
# Add exploration bonus
if np.random.random() < self.meta_parameters.exploration_rate:
score += 0.1
return score
async def _apply_gradient_strategy(
self,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Apply gradient-based learning strategy"""
return {
"result": "gradient_optimization",
"quantum_enhanced": quantum_result,
"meta_parameters": self.meta_parameters.__dict__
}
async def _apply_memory_strategy(
self,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Apply memory-based learning strategy"""
return {
"result": "memory_optimization",
"quantum_enhanced": quantum_result,
"meta_parameters": self.meta_parameters.__dict__
}
async def _apply_evolutionary_strategy(
self,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Apply evolutionary learning strategy"""
return {
"result": "evolutionary_optimization",
"quantum_enhanced": quantum_result,
"meta_parameters": self.meta_parameters.__dict__
}
async def _apply_reinforcement_strategy(
self,
observation: Dict[str, Any],
quantum_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Apply reinforcement learning strategy"""
return {
"result": "reinforcement_optimization",
"quantum_enhanced": quantum_result,
"meta_parameters": self.meta_parameters.__dict__
}
|