Spaces:
Runtime error
Runtime error
File size: 14,228 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
"""
System Configuration
------------------
Central configuration for the Agentic System including:
1. Local Model Settings
2. Team Settings
3. System Parameters
4. Resource Limits
5. Free API Configurations
"""
import os
from typing import Dict, Any, Optional
from pathlib import Path
import json
import logging
from dataclasses import dataclass, field
logger = logging.getLogger(__name__)
@dataclass
class Config:
"""Configuration for the Advanced Agentic System."""
# Core settings
min_confidence: float = 0.7
parallel_threshold: int = 3
learning_rate: float = 0.1
# Model settings
model_backend: str = field(default_factory=lambda: os.getenv('MODEL_BACKEND', 'huggingface'))
groq_api_key: Optional[str] = field(default_factory=lambda: os.getenv('GROQ_API_KEY'))
huggingface_token: Optional[str] = field(default_factory=lambda: os.getenv('HUGGINGFACE_TOKEN'))
# API settings
enable_openai_compatibility: bool = True
api_rate_limit: int = 100
api_timeout: int = 30
# Resource limits
max_parallel_requests: int = field(
default_factory=lambda: int(os.getenv('MAX_PARALLEL_REQUESTS', '10'))
)
request_timeout: int = field(
default_factory=lambda: int(os.getenv('REQUEST_TIMEOUT', '30'))
)
batch_size: int = field(
default_factory=lambda: int(os.getenv('BATCH_SIZE', '4'))
)
# Cache settings
enable_cache: bool = field(
default_factory=lambda: os.getenv('CACHE_MODELS', 'false').lower() == 'true'
)
cache_dir: str = field(
default_factory=lambda: os.getenv('SPACE_CACHE_DIR', '/tmp/models')
)
# Strategy weights
strategy_weights: Dict[str, float] = field(default_factory=lambda: {
"LOCAL_LLM": 2.0,
"CHAIN_OF_THOUGHT": 1.5,
"TREE_OF_THOUGHTS": 1.5,
"META_LEARNING": 1.5,
"TASK_DECOMPOSITION": 1.3,
"RESOURCE_MANAGEMENT": 1.3,
"CONTEXTUAL_PLANNING": 1.3,
"ADAPTIVE_EXECUTION": 1.3,
"FEEDBACK_INTEGRATION": 1.3,
"BAYESIAN": 1.2,
"MARKET_ANALYSIS": 1.2,
"PORTFOLIO_OPTIMIZATION": 1.2,
"VENTURE": 1.2,
"MONETIZATION": 1.0,
"MULTIMODAL": 1.0,
"NEUROSYMBOLIC": 1.0,
"SPECIALIZED": 1.0,
"VENTURE_TYPE": 1.0,
"RECURSIVE": 1.0,
"ANALOGICAL": 1.0
})
# Agentic system settings
agentic_system: Dict[str, Any] = field(default_factory=lambda: {
"min_confidence": 0.7,
"parallel_threshold": 3,
"learning_rate": 0.1,
"enable_meta_learning": True,
"enable_self_improvement": True,
"max_agents": 10,
"default_agent_config": {
"learning_rate": 0.1,
"risk_tolerance": 0.5,
"max_retries": 3
}
})
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize configuration."""
if config:
for key, value in config.items():
if hasattr(self, key):
setattr(self, key, value)
# Validate configuration
self._validate_config()
def _validate_config(self):
"""Validate configuration values."""
if self.min_confidence < 0 or self.min_confidence > 1:
raise ValueError("min_confidence must be between 0 and 1")
if self.parallel_threshold < 1:
raise ValueError("parallel_threshold must be at least 1")
if self.learning_rate <= 0 or self.learning_rate > 1:
raise ValueError("learning_rate must be between 0 and 1")
if self.model_backend not in ['groq', 'huggingface']:
raise ValueError("model_backend must be either 'groq' or 'huggingface'")
def get(self, key: str, default: Any = None) -> Any:
"""Get configuration value."""
return getattr(self, key, default)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary."""
return {
key: getattr(self, key)
for key in self.__annotations__
if hasattr(self, key)
}
@classmethod
def from_file(cls, filepath: str) -> 'Config':
"""Load configuration from file."""
path = Path(filepath)
if not path.exists():
raise FileNotFoundError(f"Configuration file not found: {filepath}")
with open(filepath, 'r') as f:
config = json.load(f)
return cls(config)
def save(self, filepath: str):
"""Save configuration to file."""
with open(filepath, 'w') as f:
json.dump(self.to_dict(), f, indent=2)
class SystemConfig:
"""System-wide configuration."""
# Base Paths
BASE_DIR = Path(__file__).parent.absolute()
CACHE_DIR = BASE_DIR / "cache"
LOG_DIR = BASE_DIR / "logs"
DATA_DIR = BASE_DIR / "data"
MODEL_DIR = BASE_DIR / "models"
# System Parameters
DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() == "true"
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "4"))
ASYNC_TIMEOUT = int(os.getenv("ASYNC_TIMEOUT", "30"))
# Local Model Configurations
MODEL_CONFIG = {
"quick_coder": {
"name": "tugstugi/Qwen2.5-Coder-0.5B-QwQ-draft",
"type": "transformers",
"description": "Fast code completion and simple tasks",
"temperature": 0.2,
"max_tokens": 1000,
"timeout": 30
},
"deep_coder": {
"name": "YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF",
"type": "gguf",
"description": "Complex code generation and refactoring",
"temperature": 0.3,
"max_tokens": 2000,
"timeout": 45
},
"text_gen": {
"name": "Orenguteng/Llama-3-8B-Lexi-Uncensored",
"type": "transformers",
"description": "General text generation and reasoning",
"temperature": 0.7,
"max_tokens": 1500,
"timeout": 40
},
"workflow": {
"name": "deepseek-ai/JanusFlow-1.3B",
"type": "transformers",
"description": "Task planning and workflow management",
"temperature": 0.5,
"max_tokens": 1000,
"timeout": 30
}
}
# Team Configurations
TEAM_CONFIG = {
"coders": {
"min_agents": 3,
"max_agents": 7,
"capabilities": [
"full_stack_development",
"cloud_architecture",
"ai_ml",
"blockchain",
"mobile_development"
],
"resource_limits": {
"cpu_percent": 80,
"memory_mb": 4096,
"gpu_memory_mb": 2048
}
},
"business": {
"min_agents": 2,
"max_agents": 5,
"capabilities": [
"market_analysis",
"business_strategy",
"digital_transformation",
"startup_innovation",
"product_management"
],
"resource_limits": {
"cpu_percent": 60,
"memory_mb": 2048,
"api_calls_per_minute": 100
}
},
"research": {
"min_agents": 2,
"max_agents": 6,
"capabilities": [
"deep_research",
"data_analysis",
"trend_forecasting",
"competitive_analysis",
"technology_assessment"
],
"resource_limits": {
"cpu_percent": 70,
"memory_mb": 3072,
"api_calls_per_minute": 150
}
},
"traders": {
"min_agents": 2,
"max_agents": 5,
"capabilities": [
"crypto_trading",
"sports_betting",
"risk_management",
"market_timing",
"portfolio_optimization"
],
"resource_limits": {
"cpu_percent": 60,
"memory_mb": 2048,
"api_calls_per_minute": 200
}
}
}
# Resource Management
RESOURCE_LIMITS = {
"total_cpu_percent": 90,
"total_memory_mb": 8192,
"total_gpu_memory_mb": 4096,
"max_api_calls_per_minute": 500,
"max_concurrent_tasks": 20
}
# Collaboration Settings
COLLABORATION_CONFIG = {
"min_confidence_threshold": 0.6,
"max_team_size": 10,
"max_concurrent_objectives": 5,
"objective_timeout_minutes": 60,
"team_sync_interval_seconds": 30
}
# Error Recovery
ERROR_RECOVERY = {
"max_retries": 3,
"retry_delay_seconds": 5,
"error_threshold": 0.2,
"recovery_timeout": 300
}
# Monitoring
MONITORING = {
"metrics_interval_seconds": 60,
"health_check_interval": 30,
"performance_log_retention_days": 7,
"alert_threshold": {
"cpu": 85,
"memory": 90,
"error_rate": 0.1
}
}
# Free API Configurations (No API Keys Required)
API_CONFIG = {
"search": {
"duckduckgo": {
"base_url": "https://api.duckduckgo.com",
"rate_limit": 100,
"requires_auth": False,
"method": "GET"
},
"wikipedia": {
"base_url": "https://en.wikipedia.org/w/api.php",
"rate_limit": 200,
"requires_auth": False,
"method": "GET"
},
"arxiv": {
"base_url": "http://export.arxiv.org/api/query",
"rate_limit": 60,
"requires_auth": False,
"method": "GET"
},
"crossref": {
"base_url": "https://api.crossref.org/works",
"rate_limit": 50,
"requires_auth": False,
"method": "GET"
},
"unpaywall": {
"base_url": "https://api.unpaywall.org/v2",
"rate_limit": 100,
"requires_auth": False,
"method": "GET"
}
},
"crypto": {
"coincap": {
"base_url": "https://api.coincap.io/v2",
"rate_limit": 200,
"requires_auth": False,
"method": "GET",
"endpoints": {
"assets": "/assets",
"rates": "/rates",
"markets": "/markets"
}
},
"blockchair": {
"base_url": "https://api.blockchair.com",
"rate_limit": 30,
"requires_auth": False,
"method": "GET"
}
},
"news": {
"wikinews": {
"base_url": "https://en.wikinews.org/w/api.php",
"rate_limit": 200,
"requires_auth": False,
"method": "GET"
},
"reddit": {
"base_url": "https://www.reddit.com/r/news/.json",
"rate_limit": 60,
"requires_auth": False,
"method": "GET"
},
"hackernews": {
"base_url": "https://hacker-news.firebaseio.com/v0",
"rate_limit": 100,
"requires_auth": False,
"method": "GET"
}
},
"market_data": {
"yahoo_finance": {
"base_url": "https://query1.finance.yahoo.com/v8/finance",
"rate_limit": 100,
"requires_auth": False,
"method": "GET"
},
"marketstack_free": {
"base_url": "https://api.marketstack.com/v1",
"rate_limit": 100,
"requires_auth": False,
"method": "GET"
}
},
"sports": {
"football_data": {
"base_url": "https://www.football-data.org/v4",
"rate_limit": 10,
"requires_auth": False,
"method": "GET",
"free_endpoints": [
"/competitions",
"/matches"
]
},
"nhl": {
"base_url": "https://statsapi.web.nhl.com/api/v1",
"rate_limit": 50,
"requires_auth": False,
"method": "GET"
},
"mlb": {
"base_url": "https://statsapi.mlb.com/api/v1",
"rate_limit": 50,
"requires_auth": False,
"method": "GET"
}
},
"web_scraping": {
"web_archive": {
"base_url": "https://archive.org/wayback/available",
"rate_limit": 40,
"requires_auth": False,
"method": "GET"
},
"metahtml": {
"base_url": "https://html.spec.whatwg.org/multipage",
"rate_limit": 30,
"requires_auth": False,
"method": "GET"
}
}
}
@classmethod
def get_team_config(cls, team_name: str) -> Dict[str, Any]:
"""Get configuration for a specific team."""
return cls.TEAM_CONFIG.get(team_name, {})
@classmethod
def get_model_config(cls, model_type: str) -> Dict[str, Any]:
"""Get configuration for a specific model type."""
return cls.MODEL_CONFIG.get(model_type, {})
@classmethod
def get_api_config(cls, api_name: str) -> Dict[str, Any]:
"""Get configuration for a specific API."""
for category in cls.API_CONFIG.values():
if api_name in category:
return category[api_name]
return {}
|