Spaces:
Runtime error
Runtime error
File size: 18,850 Bytes
1d75522 ccf96e3 2443dcb 1d75522 7cdc849 1d75522 a7a0958 1d75522 4e9058a a7a0958 4439b52 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 6435f9a 1d75522 6435f9a 1d75522 6435f9a 72416ea 1d75522 b4bc78c 72416ea 6435f9a 4439b52 6435f9a 72416ea 6435f9a 1d75522 6435f9a 5901371 6435f9a d2d63a6 6435f9a 5901371 6435f9a d2d63a6 6435f9a d2d63a6 6435f9a d2d63a6 6435f9a d2d63a6 6435f9a 677ea96 d2d63a6 6435f9a 5901371 6435f9a b065baa b4bc78c 6435f9a 5901371 b065baa 6435f9a b065baa 6435f9a 5901371 6435f9a b065baa 6435f9a 5901371 6435f9a b4bc78c 6435f9a b4bc78c 6435f9a 5901371 6435f9a b4bc78c 6435f9a b4bc78c 6435f9a 5901371 6435f9a 5901371 6435f9a 5901371 b4bc78c 5901371 b4bc78c 6435f9a 5901371 6435f9a 5901371 6435f9a 5901371 6435f9a 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 4ac9be9 1d75522 4ac9be9 1d75522 b4bc78c 4ac9be9 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 4439b52 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 b4bc78c 1d75522 6435f9a 1d75522 b4bc78c 1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
"""
Advanced Agentic System Interface
-------------------------------
Provides a chat interface to interact with the autonomous agent teams:
- Team A: Coders (App/Software Developers)
- Team B: Business (Entrepreneurs)
- Team C: Research (Deep Online Research)
- Team D: Crypto & Sports Trading
"""
import os
import socket
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from typing import Dict, Any, List, Tuple, Optional
import logging
from pathlib import Path
import asyncio
from datetime import datetime
import json
import requests
from requests.adapters import HTTPAdapter, Retry
from dataclasses import dataclass
from agentic_system import AgenticSystem
from orchestrator import AgentOrchestrator
from team_management import TeamManager, TeamType
from reasoning import (
UnifiedReasoningEngine,
StrategyType,
UnifiedResult
)
from api.openai_compatible import OpenAICompatibleAPI
from api.venture_api import VentureAPI
from api.groq_api import GroqAPI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_requests_session():
"""Set up requests session with retries."""
session = requests.Session()
retries = Retry(
total=5,
backoff_factor=0.1,
status_forcelist=[500, 502, 503, 504]
)
session.mount('http://', HTTPAdapter(max_retries=retries))
session.mount('https://', HTTPAdapter(max_retries=retries))
return session
def check_network():
"""Check network connectivity."""
try:
# Try DNS resolution first
socket.gethostbyname('huggingface.co')
return True
except socket.gaierror:
logger.warning("DNS resolution failed")
try:
# Try HTTP request as backup
session = setup_requests_session()
response = session.get('https://huggingface.co', timeout=5)
return response.status_code == 200
except (requests.RequestException, socket.gaierror) as e:
logger.warning(f"Network connectivity check failed: {e}")
return False
class ChatInterface:
"""Chat interface for interacting with the agentic system."""
def __init__(self):
"""Initialize the chat interface."""
# Check network connectivity
if not check_network():
raise ConnectionError("No network connectivity. Please check your connection.")
# Initialize core components with consistent configuration
config = {
"min_confidence": 0.7,
"parallel_threshold": 3,
"learning_rate": 0.1,
"strategy_weights": {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
}
}
# Initialize chat state
self.chat_history = []
self.active_objectives = {}
# Initialize components
self.orchestrator = AgentOrchestrator(config)
self.team_manager = TeamManager(self.orchestrator)
self.reasoning_engine = UnifiedReasoningEngine()
self.groq_api = GroqAPI()
# Set up the agentic system
self.agentic_system = AgenticSystem(config)
# Initialize FastAPI app
self.app = FastAPI()
self.setup_cors()
self.setup_routes()
# Create Gradio interface
self.interface = self.create_interface()
# Launch background tasks
self.background_tasks = []
self.launch_background_tasks()
async def initialize(self):
"""Initialize async components."""
await self.team_manager.initialize_team_agents()
def launch_background_tasks(self):
"""Launch background tasks."""
loop = asyncio.get_event_loop()
self.background_tasks.append(
loop.create_task(self.initialize())
)
def setup_cors(self):
"""Set up CORS middleware."""
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def setup_routes(self):
"""Set up API routes."""
# Include OpenAI-compatible routes
openai_api = OpenAICompatibleAPI(self.reasoning_engine)
self.app.include_router(openai_api.router, tags=["OpenAI Compatible"])
# Original API routes
@self.app.get("/api/health")
async def health_check():
"""Health check endpoint."""
return {
"status": "healthy",
"version": "1.0.0",
"endpoints": {
"openai_compatible": "/v1/chat/completions",
"venture": "/api/venture",
"ui": "/"
}
}
@self.app.post("/api/reason")
async def reason(query: str, context: Optional[Dict[str, Any]] = None):
"""Reasoning endpoint."""
try:
result = await self.reasoning_engine.reason(query, context or {})
return result
except Exception as e:
logger.error(f"Reasoning error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@self.app.post("/api/venture/analyze")
async def analyze_venture(
venture_type: str,
description: str,
metrics: Optional[Dict[str, Any]] = None
):
"""Venture analysis endpoint."""
try:
result = await VentureAPI(self.reasoning_engine).analyze_venture(
venture_type=venture_type,
description=description,
metrics=metrics or {}
)
return result
except Exception as e:
logger.error(f"Analysis error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@self.app.get("/api/venture/types")
async def get_venture_types():
"""Get available venture types."""
return VentureAPI(self.reasoning_engine).get_venture_types()
def create_interface(self) -> gr.Blocks:
"""Create the Gradio interface."""
with gr.Blocks(
title="Advanced Agentic System"
) as interface:
gr.Markdown("""
# π€ Advanced Agentic System Chat Interface
Welcome to our AI-powered autonomous agent teams! Each team specializes in different domains:
- π» **Team A: Coders** - Expert software developers and architects
- πΌ **Team B: Business** - Strategic entrepreneurs and analysts
- π **Team C: Research** - Deep online research specialists
- π **Team D: Trading** - Crypto & sports trading experts
You can:
1. Ask questions about any domain
2. Create new objectives for teams
3. Check status of ongoing work
4. Get insights and recommendations
---
""")
chatbot = gr.Chatbot(
show_label=False,
height=500,
type="messages" # Use OpenAI-style message format
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Chat with the Agentic System...",
container=False
)
submit = gr.Button("Send π")
with gr.Row():
clear = gr.ClearButton([msg, chatbot], value="Clear")
retry = gr.Button("Retry")
async def respond(message, history):
"""Handle chat responses with proper formatting."""
try:
# Convert history to the format expected by process_message
history_list = [[msg["content"] for msg in exchange] for exchange in history] if history else []
response = await self.process_message(message, history_list)
# Format response for markdown rendering
formatted_response = response.replace('```', '\n```\n')
# Update history with the new message format
return "", history + [
{"role": "user", "content": message},
{"role": "assistant", "content": formatted_response}
]
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
error_msg = "I apologize, but I encountered an error. Please try again."
return "", history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
async def retry_last(history):
"""Retry the last message with proper formatting."""
if not history:
return history
last_user_msg = history[-2]["content"] # Get the last user message
history = history[:-2] # Remove last exchange
return await respond(last_user_msg, history)
# Submit handlers with loading states
submit_event = msg.submit(
fn=respond,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
api_name=False
).then(
lambda: (gr.update(value="", interactive=True), gr.update(interactive=True)),
None,
[msg, submit]
)
# Click handlers with loading states
click_event = submit.click(
fn=respond,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
api_name=False
).then(
lambda: (gr.update(value="", interactive=True), gr.update(interactive=True)),
None,
[msg, submit]
)
# Retry handler
retry.click(
fn=retry_last,
inputs=[chatbot],
outputs=[chatbot],
api_name=False
)
# Auto-focus and dynamic submit button state
msg.change(
lambda x: (
gr.update(interactive=bool(x.strip())),
gr.update(interactive=bool(x.strip()), variant="primary" if x.strip() else "secondary")
),
[msg],
[msg, submit]
)
# Example queries with emojis
gr.Examples(
examples=[
"π» Can Team A help me build a web application?",
"πΌ Create a new objective: Analyze market trends for AI startups",
"π Research the latest developments in quantum computing",
"π What's the current status of all teams?"
],
inputs=msg,
label="Example Queries",
examples_per_page=4
)
return interface
async def process_message(
self,
message: str,
history: List[List[str]] = None
) -> str:
"""Process a user message."""
try:
# Initialize history if None
if history is None:
history = []
# Update chat history
self.chat_history = history
# Analyze message intent
intent = await self._analyze_intent(message)
# Process based on intent
if intent.get('type') == 'objective':
response = await self._handle_objective(message, intent)
elif intent.get('type') == 'status':
response = await self._get_status()
elif intent.get('type') == 'chat':
response = await self._handle_chat(message)
else:
response = await self._handle_chat(message) # Default to chat handler
return response
except Exception as e:
logger.error(f"Error processing message: {str(e)}")
return "I encountered an error processing your message. Please try again."
async def _analyze_intent(self, message: str) -> Dict[str, Any]:
"""Analyze user message intent with error handling."""
try:
# Use reasoning engine to analyze intent
result = await self.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"active_objectives": self.active_objectives
}
)
# Handle UnifiedResult object
if isinstance(result, UnifiedResult):
return {
"type": "chat",
"confidence": getattr(result, 'confidence', 0.5),
"metadata": getattr(result, 'metadata', {})
}
elif isinstance(result, dict):
return result
else:
return {"type": "chat", "confidence": 0.5}
except Exception as e:
logger.error(f"Error analyzing intent: {str(e)}")
return {"type": "chat", "error": str(e)}
async def _handle_objective(self, message: str, intent: Dict[str, Any]) -> str:
"""Handle objective creation and management."""
try:
# Extract objective details
objective = intent.get('objective', {})
# Create objective
objective_id = await self.team_manager.create_cross_team_objective(
objective=objective.get('description', message),
required_teams=objective.get('teams', []),
priority=objective.get('priority', 'MEDIUM')
)
# Monitor progress
status = await self.team_manager.monitor_objective_progress(objective_id)
return f"Created objective {objective_id}. Current status: {status}"
except Exception as e:
logger.error(f"Error handling objective: {str(e)}")
return "Failed to create objective. Please try again."
async def _handle_chat(self, message: str) -> str:
"""Handle general chat interactions with error recovery."""
try:
# First try using the reasoning engine
try:
result = await self.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"active_objectives": self.active_objectives,
"groq_api": self.groq_api
}
)
# Handle UnifiedResult object
if isinstance(result, UnifiedResult):
if not result.success:
# If reasoning engine fails, fallback to Groq API
groq_result = await self.groq_api.predict(message)
if groq_result["success"]:
return groq_result["answer"]
else:
return "I encountered an error. Please try rephrasing your question."
return result.answer if hasattr(result, 'answer') else str(result)
elif isinstance(result, dict):
return result.get('response', str(result))
else:
return str(result)
except Exception as reasoning_error:
logger.error(f"Reasoning engine error: {str(reasoning_error)}")
# Fallback to Groq API
groq_result = await self.groq_api.predict(message)
if groq_result["success"]:
return groq_result["answer"]
else:
raise Exception(f"Both reasoning engine and Groq API failed: {groq_result.get('error')}")
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
return "I encountered an error generating a response. Please try again."
async def _get_status(self) -> str:
"""Get system status information."""
try:
# Get team status
team_status = await self.team_manager.get_team_status()
# Get objective status
objective_status = await self.team_manager.get_objective_status()
# Format status information
status = "Current System Status:\n\n"
# Add team information
status += "Teams:\n"
for team, info in team_status.items():
status += f"- {team}: {info['status']}\n"
status += f" Active Projects: {info['active_projects']}\n"
status += f" Success Rate: {info['success_rate']}%\n\n"
# Add objective information
status += "\nActive Objectives:\n"
for obj, info in objective_status.items():
status += f"- {obj}: {info['status']}\n"
status += f" Progress: {info['progress']}%\n"
status += f" Teams: {', '.join(info['teams'])}\n\n"
return status
except Exception as e:
logger.error(f"Error formatting status: {str(e)}")
return "Error formatting status information."
def create_chat_interface() -> gr.Blocks:
"""Create Gradio chat interface."""
chat = ChatInterface()
return chat.interface
# Initialize FastAPI
app = FastAPI(
title="Advanced Agentic System API",
description="API for interacting with the autonomous agent teams",
version="1.0.0"
)
# Create Gradio interface
interface = create_chat_interface()
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, interface, path="/")
if __name__ == "__main__":
# Run with uvicorn when called directly
uvicorn.run(
"app:app",
host="0.0.0.0",
port=7860,
reload=True,
workers=4
)
|