advanced-reasoning / reasoning /unified_engine.py
nananie143's picture
Upload folder using huggingface_hub
dcb2a99 verified
"""Unified reasoning engine that combines multiple reasoning strategies."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
from .base import ReasoningStrategy
from .chain_of_thought import ChainOfThoughtStrategy
from .tree_of_thoughts import TreeOfThoughtsStrategy
from .meta_learning import MetaLearningStrategy
from .recursive import RecursiveReasoning
from .analogical import AnalogicalReasoning
from .local_llm import LocalLLMStrategy
from .agentic import (
TaskDecompositionStrategy,
ResourceManagementStrategy,
ContextualPlanningStrategy,
AdaptiveExecutionStrategy,
FeedbackIntegrationStrategy
)
class StrategyType(str, Enum):
"""Types of reasoning strategies."""
CHAIN_OF_THOUGHT = "chain_of_thought"
TREE_OF_THOUGHTS = "tree_of_thoughts"
META_LEARNING = "meta_learning"
RECURSIVE = "recursive"
ANALOGICAL = "analogical"
TASK_DECOMPOSITION = "task_decomposition"
RESOURCE_MANAGEMENT = "resource_management"
CONTEXTUAL_PLANNING = "contextual_planning"
ADAPTIVE_EXECUTION = "adaptive_execution"
FEEDBACK_INTEGRATION = "feedback_integration"
LOCAL_LLM = "local_llm"
@dataclass
class StrategyResult:
"""Result from a reasoning strategy."""
strategy_type: StrategyType
success: bool
answer: Optional[str]
confidence: float
reasoning_trace: List[Dict[str, Any]]
metadata: Dict[str, Any]
performance_metrics: Dict[str, Any]
timestamp: datetime = field(default_factory=datetime.now)
@dataclass
class UnifiedResult:
"""Combined result from multiple strategies."""
success: bool
answer: str
confidence: float
strategy_results: Dict[StrategyType, StrategyResult]
synthesis_method: str
meta_insights: List[str]
performance_metrics: Dict[str, Any]
timestamp: datetime = field(default_factory=datetime.now)
class UnifiedReasoningEngine:
"""
Advanced unified reasoning engine that:
1. Combines multiple reasoning strategies
2. Dynamically selects and weights strategies
3. Synthesizes results from different approaches
4. Learns from experience
5. Adapts to different types of tasks
"""
def __init__(self,
min_confidence: float = 0.7,
strategy_weights: Optional[Dict[StrategyType, float]] = None,
parallel_threshold: int = 3,
learning_rate: float = 0.1):
self.min_confidence = min_confidence
self.parallel_threshold = parallel_threshold
self.learning_rate = learning_rate
# Initialize strategies
self.strategies: Dict[StrategyType, ReasoningStrategy] = {
StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(),
StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(),
StrategyType.META_LEARNING: MetaLearningStrategy(),
StrategyType.RECURSIVE: RecursiveReasoning(),
StrategyType.ANALOGICAL: AnalogicalReasoning(),
StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(),
StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(),
StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(),
StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(),
StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(),
StrategyType.LOCAL_LLM: LocalLLMStrategy() # Add local LLM strategy
}
# Strategy weights with higher weight for LOCAL_LLM
self.strategy_weights = strategy_weights or {
**{strategy_type: 1.0 for strategy_type in StrategyType},
StrategyType.LOCAL_LLM: 2.0 # Higher weight for local LLM
}
# Performance tracking
self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list)
self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float))
self.synthesis_performance: Dict[str, List[float]] = defaultdict(list)
async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult:
"""Main reasoning method combining multiple strategies."""
try:
# Analyze task
task_analysis = await self._analyze_task(query, context)
# Select strategies
selected_strategies = await self._select_strategies(task_analysis, context)
# Execute strategies
strategy_results = await self._execute_strategies(
selected_strategies, query, context)
# Synthesize results
unified_result = await self._synthesize_results(
strategy_results, task_analysis, context)
# Learn from experience
self._update_performance(unified_result)
return unified_result
except Exception as e:
logging.error(f"Error in unified reasoning: {str(e)}")
return UnifiedResult(
success=False,
answer=f"Error: {str(e)}",
confidence=0.0,
strategy_results={},
synthesis_method="failed",
meta_insights=[f"Error occurred: {str(e)}"],
performance_metrics={}
)
async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze the task to determine optimal strategy selection."""
prompt = f"""
Analyze reasoning task:
Query: {query}
Context: {json.dumps(context)}
Determine:
1. Task type and complexity
2. Required reasoning capabilities
3. Resource requirements
4. Success criteria
5. Risk factors
Format as:
[Analysis]
Type: ...
Complexity: ...
Capabilities: ...
Resources: ...
Criteria: ...
Risks: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_task_analysis(response["answer"])
async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]:
"""Select appropriate strategies based on task analysis."""
# Calculate strategy scores
scores: Dict[StrategyType, float] = {}
for strategy_type in StrategyType:
base_score = self.strategy_weights[strategy_type]
# Task type performance
task_type = task_analysis["type"]
type_score = self.task_type_performance[task_type][strategy_type]
# Recent performance
recent_performance = (
sum(self.strategy_performance[strategy_type][-5:]) / 5
if self.strategy_performance[strategy_type] else 0.5
)
# Resource match
resource_match = self._calculate_resource_match(
strategy_type, task_analysis["resources"])
# Capability match
capability_match = self._calculate_capability_match(
strategy_type, task_analysis["capabilities"])
# Combined score
scores[strategy_type] = (
0.3 * base_score +
0.2 * type_score +
0.2 * recent_performance +
0.15 * resource_match +
0.15 * capability_match
)
# Select top strategies
selected = sorted(
StrategyType,
key=lambda x: scores[x],
reverse=True
)[:self.parallel_threshold]
return selected
async def _execute_strategies(self,
strategies: List[StrategyType],
query: str,
context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]:
"""Execute selected strategies in parallel."""
async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
strategy = self.strategies[strategy_type]
start_time = datetime.now()
try:
result = await strategy.reason(query, context)
return StrategyResult(
strategy_type=strategy_type,
success=result.get("success", False),
answer=result.get("answer"),
confidence=result.get("confidence", 0.0),
reasoning_trace=result.get("reasoning_trace", []),
metadata=result.get("metadata", {}),
performance_metrics={
"execution_time": (datetime.now() - start_time).total_seconds(),
**result.get("performance_metrics", {})
}
)
except Exception as e:
logging.error(f"Error in strategy {strategy_type}: {str(e)}")
return StrategyResult(
strategy_type=strategy_type,
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{"error": str(e)}],
metadata={},
performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()}
)
# Execute strategies in parallel
tasks = [execute_strategy(strategy) for strategy in strategies]
results = await asyncio.gather(*tasks)
return {result.strategy_type: result for result in results}
async def _synthesize_results(self,
strategy_results: Dict[StrategyType, StrategyResult],
task_analysis: Dict[str, Any],
context: Dict[str, Any]) -> UnifiedResult:
"""Synthesize results from multiple strategies."""
prompt = f"""
Synthesize reasoning results:
Results: {json.dumps({str(k): self._strategy_result_to_dict(v)
for k, v in strategy_results.items()})}
Task Analysis: {json.dumps(task_analysis)}
Context: {json.dumps(context)}
Provide:
1. Optimal synthesis method
2. Combined answer
3. Confidence assessment
4. Meta-insights
5. Performance analysis
Format as:
[Synthesis]
Method: ...
Answer: ...
Confidence: ...
Insights: ...
Performance: ...
"""
response = await context["groq_api"].predict(prompt)
synthesis = self._parse_synthesis(response["answer"])
return UnifiedResult(
success=synthesis["confidence"] >= self.min_confidence,
answer=synthesis["answer"],
confidence=synthesis["confidence"],
strategy_results=strategy_results,
synthesis_method=synthesis["method"],
meta_insights=synthesis["insights"],
performance_metrics=synthesis["performance"]
)
def _update_performance(self, result: UnifiedResult):
"""Update performance metrics and strategy weights."""
# Update strategy performance
for strategy_type, strategy_result in result.strategy_results.items():
self.strategy_performance[strategy_type].append(strategy_result.confidence)
# Update weights using exponential moving average
current_weight = self.strategy_weights[strategy_type]
performance = strategy_result.confidence
self.strategy_weights[strategy_type] = (
(1 - self.learning_rate) * current_weight +
self.learning_rate * performance
)
# Update synthesis performance
self.synthesis_performance[result.synthesis_method].append(result.confidence)
def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float:
"""Calculate how well a strategy matches required resources."""
# Implementation-specific resource matching logic
return 0.8 # Placeholder
def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float:
"""Calculate how well a strategy matches required capabilities."""
# Implementation-specific capability matching logic
return 0.8 # Placeholder
def _parse_task_analysis(self, response: str) -> Dict[str, Any]:
"""Parse task analysis from response."""
analysis = {
"type": "",
"complexity": 0.0,
"capabilities": [],
"resources": {},
"criteria": [],
"risks": []
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Type:'):
analysis["type"] = line[5:].strip()
elif line.startswith('Complexity:'):
try:
analysis["complexity"] = float(line[11:].strip())
except:
pass
elif line.startswith('Capabilities:'):
analysis["capabilities"] = [c.strip() for c in line[13:].split(',')]
elif line.startswith('Resources:'):
try:
analysis["resources"] = json.loads(line[10:].strip())
except:
analysis["resources"] = {"raw": line[10:].strip()}
elif line.startswith('Criteria:'):
analysis["criteria"] = [c.strip() for c in line[9:].split(',')]
elif line.startswith('Risks:'):
analysis["risks"] = [r.strip() for r in line[7:].split(',')]
return analysis
def _parse_synthesis(self, response: str) -> Dict[str, Any]:
"""Parse synthesis result from response."""
synthesis = {
"method": "",
"answer": "",
"confidence": 0.0,
"insights": [],
"performance": {}
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Method:'):
synthesis["method"] = line[7:].strip()
elif line.startswith('Answer:'):
synthesis["answer"] = line[7:].strip()
elif line.startswith('Confidence:'):
try:
synthesis["confidence"] = float(line[11:].strip())
except:
pass
elif line.startswith('Insights:'):
synthesis["insights"] = [i.strip() for i in line[9:].split(',')]
elif line.startswith('Performance:'):
try:
synthesis["performance"] = json.loads(line[12:].strip())
except:
synthesis["performance"] = {"raw": line[12:].strip()}
return synthesis
def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]:
"""Convert strategy result to dictionary for serialization."""
return {
"strategy_type": result.strategy_type.value,
"success": result.success,
"answer": result.answer,
"confidence": result.confidence,
"reasoning_trace": result.reasoning_trace,
"metadata": result.metadata,
"performance_metrics": result.performance_metrics,
"timestamp": result.timestamp.isoformat()
}
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get comprehensive performance metrics."""
return {
"strategy_weights": dict(self.strategy_weights),
"average_performance": {
strategy_type.value: sum(scores) / len(scores) if scores else 0
for strategy_type, scores in self.strategy_performance.items()
},
"synthesis_success": {
method: sum(scores) / len(scores) if scores else 0
for method, scores in self.synthesis_performance.items()
},
"task_type_performance": {
task_type: dict(strategy_scores)
for task_type, strategy_scores in self.task_type_performance.items()
}
}
def clear_performance_history(self):
"""Clear performance history and reset weights."""
self.strategy_performance.clear()
self.task_type_performance.clear()
self.synthesis_performance.clear()
self.strategy_weights = {
strategy_type: 1.0 for strategy_type in StrategyType
}