Spaces:
Runtime error
Runtime error
"""Specialized reasoning strategies for Agentic Workflow.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import asyncio | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class TaskType(Enum): | |
"""Types of tasks in agentic workflow.""" | |
CODE_GENERATION = "code_generation" | |
CODE_MODIFICATION = "code_modification" | |
CODE_REVIEW = "code_review" | |
DEBUGGING = "debugging" | |
ARCHITECTURE = "architecture" | |
OPTIMIZATION = "optimization" | |
DOCUMENTATION = "documentation" | |
TESTING = "testing" | |
class ResourceType(Enum): | |
"""Types of resources in agentic workflow.""" | |
CODE_CONTEXT = "code_context" | |
SYSTEM_CONTEXT = "system_context" | |
USER_CONTEXT = "user_context" | |
TOOLS = "tools" | |
APIS = "apis" | |
DOCUMENTATION = "documentation" | |
DEPENDENCIES = "dependencies" | |
HISTORY = "history" | |
class TaskComponent: | |
"""Component of a decomposed task.""" | |
id: str | |
type: TaskType | |
description: str | |
dependencies: List[str] | |
resources: Dict[ResourceType, Any] | |
constraints: List[str] | |
priority: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class ResourceAllocation: | |
"""Resource allocation for a task.""" | |
resource_type: ResourceType | |
quantity: Union[int, float] | |
priority: float | |
constraints: List[str] | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class ExecutionStep: | |
"""Step in task execution.""" | |
id: str | |
task_id: str | |
action: str | |
resources: Dict[ResourceType, Any] | |
status: str | |
result: Optional[Dict[str, Any]] | |
feedback: List[str] | |
timestamp: datetime = field(default_factory=datetime.now) | |
class TaskDecompositionStrategy(ReasoningStrategy): | |
""" | |
Advanced task decomposition strategy that: | |
1. Analyzes task complexity and dependencies | |
2. Breaks down tasks into manageable components | |
3. Identifies resource requirements | |
4. Establishes execution order | |
5. Manages constraints and priorities | |
""" | |
def __init__(self, max_components: int = 10): | |
self.max_components = max_components | |
self.components: Dict[str, TaskComponent] = {} | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Decompose task into components.""" | |
try: | |
# Analyze task | |
task_analysis = await self._analyze_task(query, context) | |
# Generate components | |
components = await self._generate_components(task_analysis, context) | |
# Establish dependencies | |
dependency_graph = await self._establish_dependencies(components, context) | |
# Determine execution order | |
execution_order = await self._determine_execution_order( | |
components, dependency_graph, context) | |
return { | |
"success": True, | |
"components": [self._component_to_dict(c) for c in components], | |
"dependency_graph": dependency_graph, | |
"execution_order": execution_order, | |
"metadata": { | |
"total_components": len(components), | |
"complexity_score": task_analysis.get("complexity_score", 0.0), | |
"resource_requirements": task_analysis.get("resource_requirements", {}) | |
} | |
} | |
except Exception as e: | |
logging.error(f"Error in task decomposition: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class ResourceManagementStrategy(ReasoningStrategy): | |
""" | |
Advanced resource management strategy that: | |
1. Tracks available resources | |
2. Allocates resources to tasks | |
3. Handles resource constraints | |
4. Optimizes resource utilization | |
5. Manages resource dependencies | |
""" | |
def __init__(self): | |
self.allocations: Dict[str, ResourceAllocation] = {} | |
self.utilization_history: List[Dict[str, Any]] = [] | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Manage resource allocation.""" | |
try: | |
# Analyze resource requirements | |
requirements = await self._analyze_requirements(query, context) | |
# Check resource availability | |
availability = await self._check_availability(requirements, context) | |
# Generate allocation plan | |
allocation_plan = await self._generate_allocation_plan( | |
requirements, availability, context) | |
# Optimize allocations | |
optimized_plan = await self._optimize_allocations(allocation_plan, context) | |
return { | |
"success": True, | |
"allocation_plan": optimized_plan, | |
"resource_metrics": { | |
"utilization": self._calculate_utilization(), | |
"efficiency": self._calculate_efficiency(), | |
"constraints_satisfied": self._check_constraints(optimized_plan) | |
} | |
} | |
except Exception as e: | |
logging.error(f"Error in resource management: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class ContextualPlanningStrategy(ReasoningStrategy): | |
""" | |
Advanced contextual planning strategy that: | |
1. Analyzes multiple context types | |
2. Generates context-aware plans | |
3. Handles context changes | |
4. Maintains context consistency | |
5. Optimizes for context constraints | |
""" | |
def __init__(self): | |
self.context_history: List[Dict[str, Any]] = [] | |
self.plan_adaptations: List[Dict[str, Any]] = [] | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Generate context-aware plan.""" | |
try: | |
# Analyze contexts | |
context_analysis = await self._analyze_contexts(query, context) | |
# Generate base plan | |
base_plan = await self._generate_base_plan(context_analysis, context) | |
# Adapt to contexts | |
adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis) | |
# Validate plan | |
validation = await self._validate_plan(adapted_plan, context) | |
return { | |
"success": True, | |
"plan": adapted_plan, | |
"context_impact": context_analysis.get("impact_assessment", {}), | |
"adaptations": self.plan_adaptations, | |
"validation_results": validation | |
} | |
except Exception as e: | |
logging.error(f"Error in contextual planning: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class AdaptiveExecutionStrategy(ReasoningStrategy): | |
""" | |
Advanced adaptive execution strategy that: | |
1. Monitors execution progress | |
2. Adapts to changes and feedback | |
3. Handles errors and exceptions | |
4. Optimizes execution flow | |
5. Maintains execution state | |
""" | |
def __init__(self): | |
self.execution_steps: List[ExecutionStep] = [] | |
self.adaptation_history: List[Dict[str, Any]] = [] | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute task adaptively.""" | |
try: | |
# Initialize execution | |
execution_state = await self._initialize_execution(query, context) | |
# Monitor and adapt | |
while not self._is_execution_complete(execution_state): | |
# Execute step | |
step_result = await self._execute_step(execution_state, context) | |
# Process feedback | |
feedback = await self._process_feedback(step_result, context) | |
# Adapt execution | |
execution_state = await self._adapt_execution( | |
execution_state, feedback, context) | |
# Record step | |
self._record_step(step_result, feedback) | |
return { | |
"success": True, | |
"execution_trace": [self._step_to_dict(s) for s in self.execution_steps], | |
"adaptations": self.adaptation_history, | |
"final_state": execution_state | |
} | |
except Exception as e: | |
logging.error(f"Error in adaptive execution: {str(e)}") | |
return {"success": False, "error": str(e)} | |
class FeedbackIntegrationStrategy(ReasoningStrategy): | |
""" | |
Advanced feedback integration strategy that: | |
1. Collects multiple types of feedback | |
2. Analyzes feedback patterns | |
3. Generates improvement suggestions | |
4. Tracks feedback implementation | |
5. Measures feedback impact | |
""" | |
def __init__(self): | |
self.feedback_history: List[Dict[str, Any]] = [] | |
self.improvement_history: List[Dict[str, Any]] = [] | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Integrate and apply feedback.""" | |
try: | |
# Collect feedback | |
feedback = await self._collect_feedback(query, context) | |
# Analyze patterns | |
patterns = await self._analyze_patterns(feedback, context) | |
# Generate improvements | |
improvements = await self._generate_improvements(patterns, context) | |
# Implement changes | |
implementation = await self._implement_improvements(improvements, context) | |
# Measure impact | |
impact = await self._measure_impact(implementation, context) | |
return { | |
"success": True, | |
"feedback_analysis": patterns, | |
"improvements": improvements, | |
"implementation_status": implementation, | |
"impact_metrics": impact | |
} | |
except Exception as e: | |
logging.error(f"Error in feedback integration: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Collect feedback from multiple sources.""" | |
prompt = f""" | |
Collect feedback from: | |
Query: {query} | |
Context: {json.dumps(context)} | |
Consider: | |
1. User feedback | |
2. System metrics | |
3. Code analysis | |
4. Performance data | |
5. Error patterns | |
Format as: | |
[Feedback] | |
Source: ... | |
Type: ... | |
Content: ... | |
Priority: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_feedback(response["answer"]) | |
def _parse_feedback(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse feedback from response.""" | |
feedback_items = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[Feedback]'): | |
if current: | |
feedback_items.append(current) | |
current = { | |
"source": "", | |
"type": "", | |
"content": "", | |
"priority": 0.0 | |
} | |
elif current: | |
if line.startswith('Source:'): | |
current["source"] = line[7:].strip() | |
elif line.startswith('Type:'): | |
current["type"] = line[5:].strip() | |
elif line.startswith('Content:'): | |
current["content"] = line[8:].strip() | |
elif line.startswith('Priority:'): | |
try: | |
current["priority"] = float(line[9:].strip()) | |
except: | |
pass | |
if current: | |
feedback_items.append(current) | |
return feedback_items | |