Spaces:
Runtime error
Runtime error
| """Specialized reasoning strategies for Agentic Workflow.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import asyncio | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class TaskType(Enum): | |
| """Types of tasks in agentic workflow.""" | |
| CODE_GENERATION = "code_generation" | |
| CODE_MODIFICATION = "code_modification" | |
| CODE_REVIEW = "code_review" | |
| DEBUGGING = "debugging" | |
| ARCHITECTURE = "architecture" | |
| OPTIMIZATION = "optimization" | |
| DOCUMENTATION = "documentation" | |
| TESTING = "testing" | |
| class ResourceType(Enum): | |
| """Types of resources in agentic workflow.""" | |
| CODE_CONTEXT = "code_context" | |
| SYSTEM_CONTEXT = "system_context" | |
| USER_CONTEXT = "user_context" | |
| TOOLS = "tools" | |
| APIS = "apis" | |
| DOCUMENTATION = "documentation" | |
| DEPENDENCIES = "dependencies" | |
| HISTORY = "history" | |
| class TaskComponent: | |
| """Component of a decomposed task.""" | |
| id: str | |
| type: TaskType | |
| description: str | |
| dependencies: List[str] | |
| resources: Dict[ResourceType, Any] | |
| constraints: List[str] | |
| priority: float | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class ResourceAllocation: | |
| """Resource allocation for a task.""" | |
| resource_type: ResourceType | |
| quantity: Union[int, float] | |
| priority: float | |
| constraints: List[str] | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class ExecutionStep: | |
| """Step in task execution.""" | |
| id: str | |
| task_id: str | |
| action: str | |
| resources: Dict[ResourceType, Any] | |
| status: str | |
| result: Optional[Dict[str, Any]] | |
| feedback: List[str] | |
| timestamp: datetime = field(default_factory=datetime.now) | |
| class TaskDecompositionStrategy(ReasoningStrategy): | |
| """ | |
| Advanced task decomposition strategy that: | |
| 1. Analyzes task complexity and dependencies | |
| 2. Breaks down tasks into manageable components | |
| 3. Identifies resource requirements | |
| 4. Establishes execution order | |
| 5. Manages constraints and priorities | |
| """ | |
| def __init__(self, max_components: int = 10): | |
| self.max_components = max_components | |
| self.components: Dict[str, TaskComponent] = {} | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Decompose task into components.""" | |
| try: | |
| # Analyze task | |
| task_analysis = await self._analyze_task(query, context) | |
| # Generate components | |
| components = await self._generate_components(task_analysis, context) | |
| # Establish dependencies | |
| dependency_graph = await self._establish_dependencies(components, context) | |
| # Determine execution order | |
| execution_order = await self._determine_execution_order( | |
| components, dependency_graph, context) | |
| return { | |
| "success": True, | |
| "components": [self._component_to_dict(c) for c in components], | |
| "dependency_graph": dependency_graph, | |
| "execution_order": execution_order, | |
| "metadata": { | |
| "total_components": len(components), | |
| "complexity_score": task_analysis.get("complexity_score", 0.0), | |
| "resource_requirements": task_analysis.get("resource_requirements", {}) | |
| } | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in task decomposition: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| class ResourceManagementStrategy(ReasoningStrategy): | |
| """ | |
| Advanced resource management strategy that: | |
| 1. Tracks available resources | |
| 2. Allocates resources to tasks | |
| 3. Handles resource constraints | |
| 4. Optimizes resource utilization | |
| 5. Manages resource dependencies | |
| """ | |
| def __init__(self): | |
| self.allocations: Dict[str, ResourceAllocation] = {} | |
| self.utilization_history: List[Dict[str, Any]] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Manage resource allocation.""" | |
| try: | |
| # Analyze resource requirements | |
| requirements = await self._analyze_requirements(query, context) | |
| # Check resource availability | |
| availability = await self._check_availability(requirements, context) | |
| # Generate allocation plan | |
| allocation_plan = await self._generate_allocation_plan( | |
| requirements, availability, context) | |
| # Optimize allocations | |
| optimized_plan = await self._optimize_allocations(allocation_plan, context) | |
| return { | |
| "success": True, | |
| "allocation_plan": optimized_plan, | |
| "resource_metrics": { | |
| "utilization": self._calculate_utilization(), | |
| "efficiency": self._calculate_efficiency(), | |
| "constraints_satisfied": self._check_constraints(optimized_plan) | |
| } | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in resource management: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| class ContextualPlanningStrategy(ReasoningStrategy): | |
| """ | |
| Advanced contextual planning strategy that: | |
| 1. Analyzes multiple context types | |
| 2. Generates context-aware plans | |
| 3. Handles context changes | |
| 4. Maintains context consistency | |
| 5. Optimizes for context constraints | |
| """ | |
| def __init__(self): | |
| self.context_history: List[Dict[str, Any]] = [] | |
| self.plan_adaptations: List[Dict[str, Any]] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Generate context-aware plan.""" | |
| try: | |
| # Analyze contexts | |
| context_analysis = await self._analyze_contexts(query, context) | |
| # Generate base plan | |
| base_plan = await self._generate_base_plan(context_analysis, context) | |
| # Adapt to contexts | |
| adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis) | |
| # Validate plan | |
| validation = await self._validate_plan(adapted_plan, context) | |
| return { | |
| "success": True, | |
| "plan": adapted_plan, | |
| "context_impact": context_analysis.get("impact_assessment", {}), | |
| "adaptations": self.plan_adaptations, | |
| "validation_results": validation | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in contextual planning: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| class AdaptiveExecutionStrategy(ReasoningStrategy): | |
| """ | |
| Advanced adaptive execution strategy that: | |
| 1. Monitors execution progress | |
| 2. Adapts to changes and feedback | |
| 3. Handles errors and exceptions | |
| 4. Optimizes execution flow | |
| 5. Maintains execution state | |
| """ | |
| def __init__(self): | |
| self.execution_steps: List[ExecutionStep] = [] | |
| self.adaptation_history: List[Dict[str, Any]] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Execute task adaptively.""" | |
| try: | |
| # Initialize execution | |
| execution_state = await self._initialize_execution(query, context) | |
| # Monitor and adapt | |
| while not self._is_execution_complete(execution_state): | |
| # Execute step | |
| step_result = await self._execute_step(execution_state, context) | |
| # Process feedback | |
| feedback = await self._process_feedback(step_result, context) | |
| # Adapt execution | |
| execution_state = await self._adapt_execution( | |
| execution_state, feedback, context) | |
| # Record step | |
| self._record_step(step_result, feedback) | |
| return { | |
| "success": True, | |
| "execution_trace": [self._step_to_dict(s) for s in self.execution_steps], | |
| "adaptations": self.adaptation_history, | |
| "final_state": execution_state | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in adaptive execution: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| class FeedbackIntegrationStrategy(ReasoningStrategy): | |
| """ | |
| Advanced feedback integration strategy that: | |
| 1. Collects multiple types of feedback | |
| 2. Analyzes feedback patterns | |
| 3. Generates improvement suggestions | |
| 4. Tracks feedback implementation | |
| 5. Measures feedback impact | |
| """ | |
| def __init__(self): | |
| self.feedback_history: List[Dict[str, Any]] = [] | |
| self.improvement_history: List[Dict[str, Any]] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Integrate and apply feedback.""" | |
| try: | |
| # Collect feedback | |
| feedback = await self._collect_feedback(query, context) | |
| # Analyze patterns | |
| patterns = await self._analyze_patterns(feedback, context) | |
| # Generate improvements | |
| improvements = await self._generate_improvements(patterns, context) | |
| # Implement changes | |
| implementation = await self._implement_improvements(improvements, context) | |
| # Measure impact | |
| impact = await self._measure_impact(implementation, context) | |
| return { | |
| "success": True, | |
| "feedback_analysis": patterns, | |
| "improvements": improvements, | |
| "implementation_status": implementation, | |
| "impact_metrics": impact | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in feedback integration: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Collect feedback from multiple sources.""" | |
| prompt = f""" | |
| Collect feedback from: | |
| Query: {query} | |
| Context: {json.dumps(context)} | |
| Consider: | |
| 1. User feedback | |
| 2. System metrics | |
| 3. Code analysis | |
| 4. Performance data | |
| 5. Error patterns | |
| Format as: | |
| [Feedback] | |
| Source: ... | |
| Type: ... | |
| Content: ... | |
| Priority: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_feedback(response["answer"]) | |
| def _parse_feedback(self, response: str) -> List[Dict[str, Any]]: | |
| """Parse feedback from response.""" | |
| feedback_items = [] | |
| current = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[Feedback]'): | |
| if current: | |
| feedback_items.append(current) | |
| current = { | |
| "source": "", | |
| "type": "", | |
| "content": "", | |
| "priority": 0.0 | |
| } | |
| elif current: | |
| if line.startswith('Source:'): | |
| current["source"] = line[7:].strip() | |
| elif line.startswith('Type:'): | |
| current["type"] = line[5:].strip() | |
| elif line.startswith('Content:'): | |
| current["content"] = line[8:].strip() | |
| elif line.startswith('Priority:'): | |
| try: | |
| current["priority"] = float(line[9:].strip()) | |
| except: | |
| pass | |
| if current: | |
| feedback_items.append(current) | |
| return feedback_items | |