nananie143's picture
Upload folder using huggingface_hub
dcb2a99 verified
"""Specialized reasoning strategies for Agentic Workflow."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
from .base import ReasoningStrategy
class TaskType(Enum):
"""Types of tasks in agentic workflow."""
CODE_GENERATION = "code_generation"
CODE_MODIFICATION = "code_modification"
CODE_REVIEW = "code_review"
DEBUGGING = "debugging"
ARCHITECTURE = "architecture"
OPTIMIZATION = "optimization"
DOCUMENTATION = "documentation"
TESTING = "testing"
class ResourceType(Enum):
"""Types of resources in agentic workflow."""
CODE_CONTEXT = "code_context"
SYSTEM_CONTEXT = "system_context"
USER_CONTEXT = "user_context"
TOOLS = "tools"
APIS = "apis"
DOCUMENTATION = "documentation"
DEPENDENCIES = "dependencies"
HISTORY = "history"
@dataclass
class TaskComponent:
"""Component of a decomposed task."""
id: str
type: TaskType
description: str
dependencies: List[str]
resources: Dict[ResourceType, Any]
constraints: List[str]
priority: float
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ResourceAllocation:
"""Resource allocation for a task."""
resource_type: ResourceType
quantity: Union[int, float]
priority: float
constraints: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ExecutionStep:
"""Step in task execution."""
id: str
task_id: str
action: str
resources: Dict[ResourceType, Any]
status: str
result: Optional[Dict[str, Any]]
feedback: List[str]
timestamp: datetime = field(default_factory=datetime.now)
class TaskDecompositionStrategy(ReasoningStrategy):
"""
Advanced task decomposition strategy that:
1. Analyzes task complexity and dependencies
2. Breaks down tasks into manageable components
3. Identifies resource requirements
4. Establishes execution order
5. Manages constraints and priorities
"""
def __init__(self, max_components: int = 10):
self.max_components = max_components
self.components: Dict[str, TaskComponent] = {}
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Decompose task into components."""
try:
# Analyze task
task_analysis = await self._analyze_task(query, context)
# Generate components
components = await self._generate_components(task_analysis, context)
# Establish dependencies
dependency_graph = await self._establish_dependencies(components, context)
# Determine execution order
execution_order = await self._determine_execution_order(
components, dependency_graph, context)
return {
"success": True,
"components": [self._component_to_dict(c) for c in components],
"dependency_graph": dependency_graph,
"execution_order": execution_order,
"metadata": {
"total_components": len(components),
"complexity_score": task_analysis.get("complexity_score", 0.0),
"resource_requirements": task_analysis.get("resource_requirements", {})
}
}
except Exception as e:
logging.error(f"Error in task decomposition: {str(e)}")
return {"success": False, "error": str(e)}
class ResourceManagementStrategy(ReasoningStrategy):
"""
Advanced resource management strategy that:
1. Tracks available resources
2. Allocates resources to tasks
3. Handles resource constraints
4. Optimizes resource utilization
5. Manages resource dependencies
"""
def __init__(self):
self.allocations: Dict[str, ResourceAllocation] = {}
self.utilization_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Manage resource allocation."""
try:
# Analyze resource requirements
requirements = await self._analyze_requirements(query, context)
# Check resource availability
availability = await self._check_availability(requirements, context)
# Generate allocation plan
allocation_plan = await self._generate_allocation_plan(
requirements, availability, context)
# Optimize allocations
optimized_plan = await self._optimize_allocations(allocation_plan, context)
return {
"success": True,
"allocation_plan": optimized_plan,
"resource_metrics": {
"utilization": self._calculate_utilization(),
"efficiency": self._calculate_efficiency(),
"constraints_satisfied": self._check_constraints(optimized_plan)
}
}
except Exception as e:
logging.error(f"Error in resource management: {str(e)}")
return {"success": False, "error": str(e)}
class ContextualPlanningStrategy(ReasoningStrategy):
"""
Advanced contextual planning strategy that:
1. Analyzes multiple context types
2. Generates context-aware plans
3. Handles context changes
4. Maintains context consistency
5. Optimizes for context constraints
"""
def __init__(self):
self.context_history: List[Dict[str, Any]] = []
self.plan_adaptations: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate context-aware plan."""
try:
# Analyze contexts
context_analysis = await self._analyze_contexts(query, context)
# Generate base plan
base_plan = await self._generate_base_plan(context_analysis, context)
# Adapt to contexts
adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis)
# Validate plan
validation = await self._validate_plan(adapted_plan, context)
return {
"success": True,
"plan": adapted_plan,
"context_impact": context_analysis.get("impact_assessment", {}),
"adaptations": self.plan_adaptations,
"validation_results": validation
}
except Exception as e:
logging.error(f"Error in contextual planning: {str(e)}")
return {"success": False, "error": str(e)}
class AdaptiveExecutionStrategy(ReasoningStrategy):
"""
Advanced adaptive execution strategy that:
1. Monitors execution progress
2. Adapts to changes and feedback
3. Handles errors and exceptions
4. Optimizes execution flow
5. Maintains execution state
"""
def __init__(self):
self.execution_steps: List[ExecutionStep] = []
self.adaptation_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute task adaptively."""
try:
# Initialize execution
execution_state = await self._initialize_execution(query, context)
# Monitor and adapt
while not self._is_execution_complete(execution_state):
# Execute step
step_result = await self._execute_step(execution_state, context)
# Process feedback
feedback = await self._process_feedback(step_result, context)
# Adapt execution
execution_state = await self._adapt_execution(
execution_state, feedback, context)
# Record step
self._record_step(step_result, feedback)
return {
"success": True,
"execution_trace": [self._step_to_dict(s) for s in self.execution_steps],
"adaptations": self.adaptation_history,
"final_state": execution_state
}
except Exception as e:
logging.error(f"Error in adaptive execution: {str(e)}")
return {"success": False, "error": str(e)}
class FeedbackIntegrationStrategy(ReasoningStrategy):
"""
Advanced feedback integration strategy that:
1. Collects multiple types of feedback
2. Analyzes feedback patterns
3. Generates improvement suggestions
4. Tracks feedback implementation
5. Measures feedback impact
"""
def __init__(self):
self.feedback_history: List[Dict[str, Any]] = []
self.improvement_history: List[Dict[str, Any]] = []
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Integrate and apply feedback."""
try:
# Collect feedback
feedback = await self._collect_feedback(query, context)
# Analyze patterns
patterns = await self._analyze_patterns(feedback, context)
# Generate improvements
improvements = await self._generate_improvements(patterns, context)
# Implement changes
implementation = await self._implement_improvements(improvements, context)
# Measure impact
impact = await self._measure_impact(implementation, context)
return {
"success": True,
"feedback_analysis": patterns,
"improvements": improvements,
"implementation_status": implementation,
"impact_metrics": impact
}
except Exception as e:
logging.error(f"Error in feedback integration: {str(e)}")
return {"success": False, "error": str(e)}
async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Collect feedback from multiple sources."""
prompt = f"""
Collect feedback from:
Query: {query}
Context: {json.dumps(context)}
Consider:
1. User feedback
2. System metrics
3. Code analysis
4. Performance data
5. Error patterns
Format as:
[Feedback]
Source: ...
Type: ...
Content: ...
Priority: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_feedback(response["answer"])
def _parse_feedback(self, response: str) -> List[Dict[str, Any]]:
"""Parse feedback from response."""
feedback_items = []
current = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[Feedback]'):
if current:
feedback_items.append(current)
current = {
"source": "",
"type": "",
"content": "",
"priority": 0.0
}
elif current:
if line.startswith('Source:'):
current["source"] = line[7:].strip()
elif line.startswith('Type:'):
current["type"] = line[5:].strip()
elif line.startswith('Content:'):
current["content"] = line[8:].strip()
elif line.startswith('Priority:'):
try:
current["priority"] = float(line[9:].strip())
except:
pass
if current:
feedback_items.append(current)
return feedback_items