Spaces:
Runtime error
Runtime error
"""Advanced portfolio optimization for venture strategies.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class VentureMetrics: | |
"""Venture performance metrics.""" | |
revenue: float | |
profit: float | |
growth_rate: float | |
risk_score: float | |
resource_usage: Dict[str, float] | |
synergy_score: float | |
class ResourceAllocation: | |
"""Resource allocation configuration.""" | |
venture_id: str | |
resources: Dict[str, float] | |
constraints: List[str] | |
dependencies: List[str] | |
priority: float | |
class PortfolioOptimizer: | |
""" | |
Advanced portfolio optimization that: | |
1. Optimizes venture mix | |
2. Allocates resources | |
3. Manages risks | |
4. Maximizes synergies | |
5. Balances growth | |
""" | |
def __init__(self): | |
self.ventures: Dict[str, VentureMetrics] = {} | |
self.allocations: Dict[str, ResourceAllocation] = {} | |
async def optimize_portfolio(self, | |
ventures: List[str], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize venture portfolio.""" | |
try: | |
# Analyze ventures | |
analysis = await self._analyze_ventures(ventures, context) | |
# Optimize allocation | |
allocation = await self._optimize_allocation(analysis, context) | |
# Risk optimization | |
risk = await self._optimize_risk(allocation, context) | |
# Synergy optimization | |
synergy = await self._optimize_synergies(risk, context) | |
# Performance projections | |
projections = await self._project_performance(synergy, context) | |
return { | |
"success": projections["annual_profit"] >= 1_000_000, | |
"analysis": analysis, | |
"allocation": allocation, | |
"risk": risk, | |
"synergy": synergy, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in portfolio optimization: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _analyze_ventures(self, | |
ventures: List[str], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze venture characteristics.""" | |
prompt = f""" | |
Analyze ventures: | |
Ventures: {json.dumps(ventures)} | |
Context: {json.dumps(context)} | |
Analyze: | |
1. Performance metrics | |
2. Resource requirements | |
3. Risk factors | |
4. Growth potential | |
5. Synergy opportunities | |
Format as: | |
[Venture1] | |
Metrics: ... | |
Resources: ... | |
Risks: ... | |
Growth: ... | |
Synergies: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_venture_analysis(response["answer"]) | |
async def _optimize_allocation(self, | |
analysis: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize resource allocation.""" | |
prompt = f""" | |
Optimize resource allocation: | |
Analysis: {json.dumps(analysis)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Resource efficiency | |
2. Growth potential | |
3. Risk balance | |
4. Synergy capture | |
5. Constraint satisfaction | |
Format as: | |
[Allocation1] | |
Venture: ... | |
Resources: ... | |
Constraints: ... | |
Dependencies: ... | |
Priority: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_allocation_optimization(response["answer"]) | |
async def _optimize_risk(self, | |
allocation: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize risk management.""" | |
prompt = f""" | |
Optimize risk management: | |
Allocation: {json.dumps(allocation)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Risk diversification | |
2. Exposure limits | |
3. Correlation management | |
4. Hedging strategies | |
5. Contingency planning | |
Format as: | |
[Risk1] | |
Type: ... | |
Exposure: ... | |
Mitigation: ... | |
Contingency: ... | |
Impact: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_risk_optimization(response["answer"]) | |
async def _optimize_synergies(self, | |
risk: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize portfolio synergies.""" | |
prompt = f""" | |
Optimize synergies: | |
Risk: {json.dumps(risk)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Resource sharing | |
2. Knowledge transfer | |
3. Market leverage | |
4. Technology reuse | |
5. Customer cross-sell | |
Format as: | |
[Synergy1] | |
Type: ... | |
Ventures: ... | |
Potential: ... | |
Requirements: ... | |
Timeline: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_synergy_optimization(response["answer"]) | |
async def _project_performance(self, | |
synergy: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Project portfolio performance.""" | |
prompt = f""" | |
Project performance: | |
Synergy: {json.dumps(synergy)} | |
Context: {json.dumps(context)} | |
Project: | |
1. Revenue growth | |
2. Profit margins | |
3. Resource utilization | |
4. Risk metrics | |
5. Synergy capture | |
Format as: | |
[Projections] | |
Revenue: ... | |
Profit: ... | |
Resources: ... | |
Risk: ... | |
Synergies: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_performance_projections(response["answer"]) | |
def _calculate_portfolio_metrics(self) -> Dict[str, float]: | |
"""Calculate comprehensive portfolio metrics.""" | |
if not self.ventures: | |
return { | |
"total_revenue": 0.0, | |
"total_profit": 0.0, | |
"avg_growth": 0.0, | |
"avg_risk": 0.0, | |
"resource_efficiency": 0.0, | |
"synergy_capture": 0.0 | |
} | |
metrics = { | |
"total_revenue": sum(v.revenue for v in self.ventures.values()), | |
"total_profit": sum(v.profit for v in self.ventures.values()), | |
"avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]), | |
"avg_risk": np.mean([v.risk_score for v in self.ventures.values()]), | |
"resource_efficiency": self._calculate_resource_efficiency(), | |
"synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()]) | |
} | |
return metrics | |
def _calculate_resource_efficiency(self) -> float: | |
"""Calculate resource utilization efficiency.""" | |
if not self.ventures or not self.allocations: | |
return 0.0 | |
total_resources = defaultdict(float) | |
used_resources = defaultdict(float) | |
# Sum up total and used resources | |
for venture_id, allocation in self.allocations.items(): | |
for resource, amount in allocation.resources.items(): | |
total_resources[resource] += amount | |
if venture_id in self.ventures: | |
used_resources[resource] += ( | |
amount * self.ventures[venture_id].resource_usage.get(resource, 0) | |
) | |
# Calculate efficiency for each resource | |
efficiencies = [] | |
for resource in total_resources: | |
if total_resources[resource] > 0: | |
efficiency = used_resources[resource] / total_resources[resource] | |
efficiencies.append(efficiency) | |
return np.mean(efficiencies) if efficiencies else 0.0 | |
def get_portfolio_insights(self) -> Dict[str, Any]: | |
"""Get comprehensive portfolio insights.""" | |
metrics = self._calculate_portfolio_metrics() | |
return { | |
"portfolio_metrics": metrics, | |
"venture_metrics": { | |
venture_id: { | |
"revenue": v.revenue, | |
"profit": v.profit, | |
"growth_rate": v.growth_rate, | |
"risk_score": v.risk_score, | |
"synergy_score": v.synergy_score | |
} | |
for venture_id, v in self.ventures.items() | |
}, | |
"resource_allocation": { | |
venture_id: { | |
"resources": a.resources, | |
"priority": a.priority, | |
"constraints": len(a.constraints), | |
"dependencies": len(a.dependencies) | |
} | |
for venture_id, a in self.allocations.items() | |
}, | |
"risk_profile": { | |
"portfolio_risk": metrics["avg_risk"], | |
"risk_concentration": self._calculate_risk_concentration(), | |
"risk_correlation": self._calculate_risk_correlation() | |
}, | |
"optimization_opportunities": self._identify_optimization_opportunities() | |
} | |
def _calculate_risk_concentration(self) -> float: | |
"""Calculate risk concentration in portfolio.""" | |
if not self.ventures: | |
return 0.0 | |
risk_weights = [v.risk_score for v in self.ventures.values()] | |
return np.std(risk_weights) if len(risk_weights) > 1 else 0.0 | |
def _calculate_risk_correlation(self) -> float: | |
"""Calculate risk correlation between ventures.""" | |
if len(self.ventures) < 2: | |
return 0.0 | |
# Create correlation matrix of risk scores and resource usage | |
venture_metrics = [ | |
[v.risk_score] + list(v.resource_usage.values()) | |
for v in self.ventures.values() | |
] | |
correlation_matrix = np.corrcoef(venture_metrics) | |
return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)]) | |
def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]: | |
"""Identify portfolio optimization opportunities.""" | |
opportunities = [] | |
# Resource optimization opportunities | |
resource_efficiency = self._calculate_resource_efficiency() | |
if resource_efficiency < 0.8: | |
opportunities.append({ | |
"type": "resource_optimization", | |
"potential": 1.0 - resource_efficiency, | |
"description": "Improve resource utilization efficiency" | |
}) | |
# Risk optimization opportunities | |
risk_concentration = self._calculate_risk_concentration() | |
if risk_concentration > 0.2: | |
opportunities.append({ | |
"type": "risk_diversification", | |
"potential": risk_concentration, | |
"description": "Reduce risk concentration" | |
}) | |
# Synergy optimization opportunities | |
avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0 | |
if avg_synergy < 0.7: | |
opportunities.append({ | |
"type": "synergy_capture", | |
"potential": 1.0 - avg_synergy, | |
"description": "Increase synergy capture" | |
}) | |
return opportunities | |
class PortfolioOptimizationStrategy(ReasoningStrategy): | |
""" | |
Advanced portfolio optimization strategy that: | |
1. Analyzes venture metrics | |
2. Optimizes resource allocation | |
3. Balances risk-reward | |
4. Maximizes portfolio synergies | |
5. Provides actionable recommendations | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize portfolio optimization strategy.""" | |
super().__init__() | |
self.config = config or {} | |
self.optimizer = PortfolioOptimizer() | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Generate portfolio optimization strategy based on query and context. | |
Args: | |
query: The portfolio optimization query | |
context: Additional context and parameters | |
Returns: | |
Dict containing optimization strategy and confidence scores | |
""" | |
try: | |
# Extract portfolio parameters | |
params = self._extract_parameters(query, context) | |
# Optimize portfolio | |
optimization_result = self.optimizer.optimize_portfolio( | |
ventures=params.get('ventures', []), | |
constraints=params.get('constraints', []), | |
objectives=params.get('objectives', []) | |
) | |
# Get metrics | |
metrics = self.optimizer.get_portfolio_metrics() | |
# Generate recommendations | |
recommendations = self._generate_recommendations( | |
optimization_result, | |
metrics | |
) | |
return { | |
'answer': self._format_strategy(optimization_result, metrics, recommendations), | |
'confidence': self._calculate_confidence(optimization_result), | |
'optimization': optimization_result, | |
'metrics': metrics, | |
'recommendations': recommendations | |
} | |
except Exception as e: | |
logging.error(f"Portfolio optimization failed: {str(e)}") | |
return { | |
'error': f"Portfolio optimization failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Extract optimization parameters from query and context.""" | |
params = {} | |
# Extract ventures | |
if 'ventures' in context: | |
params['ventures'] = context['ventures'] | |
else: | |
# Default empty portfolio | |
params['ventures'] = [] | |
# Extract constraints | |
if 'constraints' in context: | |
params['constraints'] = context['constraints'] | |
else: | |
# Default constraints | |
params['constraints'] = [ | |
'budget_limit', | |
'risk_tolerance', | |
'resource_capacity' | |
] | |
# Extract objectives | |
if 'objectives' in context: | |
params['objectives'] = context['objectives'] | |
else: | |
# Default objectives | |
params['objectives'] = [ | |
'maximize_returns', | |
'minimize_risk', | |
'maximize_synergies' | |
] | |
return params | |
def _generate_recommendations( | |
self, | |
optimization_result: Dict[str, Any], | |
metrics: Dict[str, Any] | |
) -> List[str]: | |
"""Generate actionable recommendations.""" | |
recommendations = [] | |
# Portfolio composition recommendations | |
if 'allocation' in optimization_result: | |
allocation = optimization_result['allocation'] | |
recommendations.extend([ | |
f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}" | |
for alloc in allocation | |
]) | |
# Risk management recommendations | |
if 'risk_analysis' in metrics: | |
risk = metrics['risk_analysis'] | |
if risk.get('total_risk', 0) > 0.7: | |
recommendations.append( | |
"Consider reducing exposure to high-risk ventures" | |
) | |
if risk.get('correlation', 0) > 0.8: | |
recommendations.append( | |
"Increase portfolio diversification to reduce correlation" | |
) | |
# Performance optimization recommendations | |
if 'performance' in metrics: | |
perf = metrics['performance'] | |
if perf.get('sharpe_ratio', 0) < 1.0: | |
recommendations.append( | |
"Optimize risk-adjusted returns through better venture selection" | |
) | |
if perf.get('efficiency', 0) < 0.8: | |
recommendations.append( | |
"Improve resource allocation efficiency across ventures" | |
) | |
return recommendations | |
def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float: | |
"""Calculate confidence score based on optimization quality.""" | |
# Base confidence | |
confidence = 0.5 | |
# Adjust based on optimization completeness | |
if optimization_result.get('allocation'): | |
confidence += 0.1 | |
if optimization_result.get('risk_analysis'): | |
confidence += 0.1 | |
if optimization_result.get('performance_metrics'): | |
confidence += 0.1 | |
# Adjust based on solution quality | |
if optimization_result.get('convergence_status') == 'optimal': | |
confidence += 0.2 | |
elif optimization_result.get('convergence_status') == 'suboptimal': | |
confidence += 0.1 | |
return min(confidence, 1.0) | |
def _format_strategy( | |
self, | |
optimization_result: Dict[str, Any], | |
metrics: Dict[str, Any], | |
recommendations: List[str] | |
) -> str: | |
"""Format optimization strategy into readable text.""" | |
sections = [] | |
# Portfolio allocation | |
if 'allocation' in optimization_result: | |
allocation = optimization_result['allocation'] | |
sections.append("Portfolio Allocation:") | |
for alloc in allocation: | |
sections.append( | |
f"- {alloc['venture']}: {alloc['percentage']:.1f}%" | |
) | |
# Key metrics | |
if metrics: | |
sections.append("\nKey Metrics:") | |
for key, value in metrics.items(): | |
if isinstance(value, (int, float)): | |
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}") | |
else: | |
sections.append(f"- {key.replace('_', ' ').title()}: {value}") | |
# Recommendations | |
if recommendations: | |
sections.append("\nKey Recommendations:") | |
for rec in recommendations: | |
sections.append(f"- {rec}") | |
return "\n".join(sections) | |