Spaces:
Runtime error
Runtime error
""" | |
Emergent Reasoning Module | |
------------------------ | |
Implements emergent reasoning capabilities that arise from the interaction | |
of multiple reasoning strategies and patterns. | |
""" | |
from typing import Dict, Any, List, Optional | |
from .base import ReasoningStrategy | |
from .meta_learning import MetaLearningStrategy | |
from .chain_of_thought import ChainOfThoughtStrategy | |
from .tree_of_thoughts import TreeOfThoughtsStrategy | |
class EmergentReasoning(ReasoningStrategy): | |
""" | |
A reasoning strategy that combines multiple approaches to discover | |
emergent patterns and solutions. | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize emergent reasoning with component strategies.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Initialize component strategies with shared config | |
strategy_config = { | |
'min_confidence': self.min_confidence, | |
'parallel_threshold': self.parallel_threshold, | |
'learning_rate': self.learning_rate, | |
'strategy_weights': self.strategy_weights | |
} | |
self.meta_learner = MetaLearningStrategy(strategy_config) | |
self.chain_of_thought = ChainOfThoughtStrategy(strategy_config) | |
self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config) | |
# Configure weights for strategy combination | |
self.weights = self.config.get('combination_weights', { | |
'meta': 0.4, | |
'chain': 0.3, | |
'tree': 0.3 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Apply emergent reasoning by combining multiple strategies and | |
identifying patterns that emerge from their interaction. | |
Args: | |
query: The input query to reason about | |
context: Additional context and parameters | |
Returns: | |
Dict containing reasoning results and confidence scores | |
""" | |
try: | |
# Get results from each strategy | |
meta_result = await self.meta_learner.reason(query, context) | |
chain_result = await self.chain_of_thought.reason(query, context) | |
tree_result = await self.tree_of_thoughts.reason(query, context) | |
# Combine results with weighted averaging | |
combined_answer = self._combine_results([ | |
(meta_result.get('answer', ''), self.weights['meta']), | |
(chain_result.get('answer', ''), self.weights['chain']), | |
(tree_result.get('answer', ''), self.weights['tree']) | |
]) | |
# Calculate overall confidence | |
confidence = ( | |
meta_result.get('confidence', 0) * self.weights['meta'] + | |
chain_result.get('confidence', 0) * self.weights['chain'] + | |
tree_result.get('confidence', 0) * self.weights['tree'] | |
) | |
return { | |
'answer': combined_answer, | |
'confidence': confidence, | |
'reasoning_path': { | |
'meta': meta_result.get('reasoning_path'), | |
'chain': chain_result.get('reasoning_path'), | |
'tree': tree_result.get('reasoning_path') | |
}, | |
'emergent_patterns': self._identify_patterns([ | |
meta_result, chain_result, tree_result | |
]) | |
} | |
except Exception as e: | |
return { | |
'error': f"Emergent reasoning failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str: | |
"""Combine multiple reasoning results with weights.""" | |
if not weighted_results: | |
return "" | |
# For now, use the highest weighted result | |
return max(weighted_results, key=lambda x: x[1])[0] | |
def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]: | |
"""Identify common patterns across different reasoning strategies.""" | |
patterns = [] | |
# Extract common themes or conclusions | |
answers = [r.get('answer', '') for r in results if r.get('answer')] | |
if len(set(answers)) == 1: | |
patterns.append("All strategies reached the same conclusion") | |
elif len(set(answers)) < len(answers): | |
patterns.append("Some strategies converged on similar conclusions") | |
# Look for common confidence patterns | |
confidences = [r.get('confidence', 0) for r in results] | |
avg_confidence = sum(confidences) / len(confidences) if confidences else 0 | |
if avg_confidence > 0.8: | |
patterns.append("High confidence across all strategies") | |
elif avg_confidence < 0.3: | |
patterns.append("Low confidence across strategies") | |
return patterns | |