Spaces:
Runtime error
Runtime error
| """Quantum-inspired reasoning implementations.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class QuantumState: | |
| """Quantum state with superposition and entanglement.""" | |
| name: str | |
| amplitude: complex | |
| phase: float | |
| entangled_states: List[str] = field(default_factory=list) | |
| class QuantumReasoning(ReasoningStrategy): | |
| """ | |
| Advanced quantum reasoning that: | |
| 1. Creates quantum states | |
| 2. Applies quantum operations | |
| 3. Measures outcomes | |
| 4. Handles superposition | |
| 5. Models entanglement | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize quantum reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Configure quantum parameters | |
| self.num_qubits = self.config.get('num_qubits', 3) | |
| self.measurement_threshold = self.config.get('measurement_threshold', 0.1) | |
| self.decoherence_rate = self.config.get('decoherence_rate', 0.01) | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Apply quantum reasoning to analyze complex decisions. | |
| Args: | |
| query: The input query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| Dict containing reasoning results and confidence scores | |
| """ | |
| try: | |
| # Initialize quantum states | |
| states = await self._initialize_states(query, context) | |
| # Apply quantum operations | |
| evolved_states = await self._apply_operations(states, context) | |
| # Measure outcomes | |
| measurements = await self._measure_states(evolved_states, context) | |
| # Generate analysis | |
| analysis = await self._generate_analysis(measurements, context) | |
| return { | |
| 'answer': self._format_analysis(analysis), | |
| 'confidence': self._calculate_confidence(measurements), | |
| 'states': states, | |
| 'evolved_states': evolved_states, | |
| 'measurements': measurements, | |
| 'analysis': analysis | |
| } | |
| except Exception as e: | |
| logging.error(f"Quantum reasoning failed: {str(e)}") | |
| return { | |
| 'error': f"Quantum reasoning failed: {str(e)}", | |
| 'confidence': 0.0 | |
| } | |
| async def _initialize_states( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[QuantumState]: | |
| """Initialize quantum states.""" | |
| states = [] | |
| # Extract key terms for state initialization | |
| terms = set(query.lower().split()) | |
| # Create quantum states based on terms | |
| for i, term in enumerate(terms): | |
| if i >= self.num_qubits: | |
| break | |
| # Calculate initial amplitude and phase | |
| amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits])) | |
| phase = 2 * np.pi * i / len(terms[:self.num_qubits]) | |
| states.append(QuantumState( | |
| name=term, | |
| amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)), | |
| phase=phase | |
| )) | |
| # Create entangled states if specified | |
| if context.get('entangle', False): | |
| self._entangle_states(states) | |
| return states | |
| async def _apply_operations( | |
| self, | |
| states: List[QuantumState], | |
| context: Dict[str, Any] | |
| ) -> List[QuantumState]: | |
| """Apply quantum operations to states.""" | |
| evolved_states = [] | |
| # Get operation parameters | |
| rotation = context.get('rotation', 0.0) | |
| phase_shift = context.get('phase_shift', 0.0) | |
| for state in states: | |
| # Apply rotation | |
| rotated_amplitude = state.amplitude * np.exp(1j * rotation) | |
| # Apply phase shift | |
| shifted_phase = (state.phase + phase_shift) % (2 * np.pi) | |
| # Apply decoherence | |
| decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate) | |
| evolved_states.append(QuantumState( | |
| name=state.name, | |
| amplitude=decohered_amplitude, | |
| phase=shifted_phase, | |
| entangled_states=state.entangled_states.copy() | |
| )) | |
| return evolved_states | |
| async def _measure_states( | |
| self, | |
| states: List[QuantumState], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, float]: | |
| """Measure quantum states.""" | |
| measurements = {} | |
| # Calculate total probability | |
| total_probability = sum( | |
| abs(state.amplitude) ** 2 | |
| for state in states | |
| ) | |
| if total_probability > 0: | |
| # Normalize and store measurements | |
| for state in states: | |
| probability = (abs(state.amplitude) ** 2) / total_probability | |
| if probability > self.measurement_threshold: | |
| measurements[state.name] = probability | |
| return measurements | |
| def _entangle_states(self, states: List[QuantumState]) -> None: | |
| """Create entanglement between states.""" | |
| if len(states) < 2: | |
| return | |
| # Simple entanglement: connect adjacent states | |
| for i in range(len(states) - 1): | |
| states[i].entangled_states.append(states[i + 1].name) | |
| states[i + 1].entangled_states.append(states[i].name) | |
| async def _generate_analysis( | |
| self, | |
| measurements: Dict[str, float], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Generate quantum analysis.""" | |
| # Sort states by measurement probability | |
| ranked_states = sorted( | |
| measurements.items(), | |
| key=lambda x: x[1], | |
| reverse=True | |
| ) | |
| # Calculate quantum statistics | |
| amplitudes = list(measurements.values()) | |
| mean = np.mean(amplitudes) if amplitudes else 0 | |
| std = np.std(amplitudes) if amplitudes else 0 | |
| # Calculate quantum entropy | |
| entropy = -sum( | |
| p * np.log2(p) if p > 0 else 0 | |
| for p in measurements.values() | |
| ) | |
| return { | |
| 'top_state': ranked_states[0][0] if ranked_states else '', | |
| 'probability': ranked_states[0][1] if ranked_states else 0, | |
| 'alternatives': [ | |
| {'name': name, 'probability': prob} | |
| for name, prob in ranked_states[1:] | |
| ], | |
| 'statistics': { | |
| 'mean': mean, | |
| 'std': std, | |
| 'entropy': entropy | |
| } | |
| } | |
| def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
| """Format analysis into readable text.""" | |
| sections = [] | |
| # Top quantum state | |
| if analysis['top_state']: | |
| sections.append( | |
| f"Most probable quantum state: {analysis['top_state']} " | |
| f"(probability: {analysis['probability']:.2%})" | |
| ) | |
| # Alternative states | |
| if analysis['alternatives']: | |
| sections.append("\nAlternative quantum states:") | |
| for alt in analysis['alternatives']: | |
| sections.append( | |
| f"- {alt['name']}: {alt['probability']:.2%}" | |
| ) | |
| # Quantum statistics | |
| stats = analysis['statistics'] | |
| sections.append("\nQuantum statistics:") | |
| sections.append(f"- Mean amplitude: {stats['mean']:.2%}") | |
| sections.append(f"- Standard deviation: {stats['std']:.2%}") | |
| sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits") | |
| return "\n".join(sections) | |
| def _calculate_confidence(self, measurements: Dict[str, float]) -> float: | |
| """Calculate overall confidence score.""" | |
| if not measurements: | |
| return 0.0 | |
| # Base confidence | |
| confidence = 0.5 | |
| # Adjust based on measurement distribution | |
| probs = list(measurements.values()) | |
| # Strong leading measurement increases confidence | |
| max_prob = max(probs) | |
| if max_prob > 0.8: | |
| confidence += 0.3 | |
| elif max_prob > 0.6: | |
| confidence += 0.2 | |
| elif max_prob > 0.4: | |
| confidence += 0.1 | |
| # Low entropy (clear distinction) increases confidence | |
| entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs) | |
| max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy | |
| if entropy < 0.3 * max_entropy: | |
| confidence += 0.2 | |
| elif entropy < 0.6 * max_entropy: | |
| confidence += 0.1 | |
| return min(confidence, 1.0) | |
| class QuantumInspiredStrategy(ReasoningStrategy): | |
| """Implements Quantum-Inspired reasoning.""" | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| try: | |
| # Create a clean context for serialization | |
| clean_context = {k: v for k, v in context.items() if k != "groq_api"} | |
| prompt = f""" | |
| You are a meta-learning reasoning system that adapts its approach based on problem characteristics. | |
| Problem Type: | |
| Query: {query} | |
| Context: {json.dumps(clean_context)} | |
| Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: | |
| PROBLEM ANALYSIS: | |
| - [First key aspect or complexity factor] | |
| - [Second key aspect or complexity factor] | |
| - [Third key aspect or complexity factor] | |
| SOLUTION PATHS: | |
| - Path 1: [Specific solution approach] | |
| - Path 2: [Alternative solution approach] | |
| - Path 3: [Another alternative approach] | |
| META INSIGHTS: | |
| - Learning 1: [Key insight about the problem space] | |
| - Learning 2: [Key insight about solution approaches] | |
| - Learning 3: [Key insight about trade-offs] | |
| CONCLUSION: | |
| [Final synthesized solution incorporating meta-learnings] | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| if not response["success"]: | |
| return response | |
| # Parse response into components | |
| lines = response["answer"].split("\n") | |
| problem_analysis = [] | |
| solution_paths = [] | |
| meta_insights = [] | |
| conclusion = "" | |
| section = None | |
| for line in lines: | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if "PROBLEM ANALYSIS:" in line: | |
| section = "analysis" | |
| elif "SOLUTION PATHS:" in line: | |
| section = "paths" | |
| elif "META INSIGHTS:" in line: | |
| section = "insights" | |
| elif "CONCLUSION:" in line: | |
| section = "conclusion" | |
| elif line.startswith("-"): | |
| content = line.lstrip("- ").strip() | |
| if section == "analysis": | |
| problem_analysis.append(content) | |
| elif section == "paths": | |
| solution_paths.append(content) | |
| elif section == "insights": | |
| meta_insights.append(content) | |
| elif section == "conclusion": | |
| conclusion += line + " " | |
| return { | |
| "success": True, | |
| "problem_analysis": problem_analysis, | |
| "solution_paths": solution_paths, | |
| "meta_insights": meta_insights, | |
| "conclusion": conclusion.strip(), | |
| # Add standard fields for compatibility | |
| "reasoning_path": problem_analysis + solution_paths + meta_insights, | |
| "conclusion": conclusion.strip() | |
| } | |
| except Exception as e: | |
| return {"success": False, "error": str(e)} | |