Spaces:
Runtime error
Runtime error
| """Advanced neurosymbolic reasoning combining neural and symbolic approaches.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class NeuralFeature: | |
| """Neural features extracted from data.""" | |
| name: str | |
| values: np.ndarray | |
| importance: float | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class SymbolicRule: | |
| """Symbolic rule with conditions and confidence.""" | |
| name: str | |
| conditions: List[str] | |
| conclusion: str | |
| confidence: float | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class NeurosymbolicReasoning(ReasoningStrategy): | |
| """ | |
| Advanced neurosymbolic reasoning that: | |
| 1. Extracts neural features | |
| 2. Generates symbolic rules | |
| 3. Combines approaches | |
| 4. Handles uncertainty | |
| 5. Provides interpretable results | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize neurosymbolic reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Neurosymbolic specific parameters | |
| self.feature_threshold = self.config.get('feature_threshold', 0.1) | |
| self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7) | |
| self.max_rules = self.config.get('max_rules', 10) | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Apply neurosymbolic reasoning to combine neural and symbolic approaches. | |
| Args: | |
| query: The input query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| Dict containing reasoning results and confidence scores | |
| """ | |
| try: | |
| # Extract neural features | |
| features = await self._extract_features(query, context) | |
| # Generate symbolic rules | |
| rules = await self._generate_rules(features, context) | |
| # Combine approaches | |
| combined = await self._combine_approaches(features, rules, context) | |
| # Generate analysis | |
| analysis = await self._generate_analysis(combined, context) | |
| return { | |
| 'answer': self._format_analysis(analysis), | |
| 'confidence': self._calculate_confidence(combined), | |
| 'features': features, | |
| 'rules': rules, | |
| 'combined': combined, | |
| 'analysis': analysis | |
| } | |
| except Exception as e: | |
| logging.error(f"Neurosymbolic reasoning failed: {str(e)}") | |
| return { | |
| 'error': f"Neurosymbolic reasoning failed: {str(e)}", | |
| 'confidence': 0.0 | |
| } | |
| async def _extract_features( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[NeuralFeature]: | |
| """Extract neural features from input.""" | |
| features = [] | |
| # Extract key terms | |
| terms = query.lower().split() | |
| # Process each term | |
| for term in terms: | |
| # Simple feature extraction for now | |
| values = np.random.randn(10) # Placeholder for real feature extraction | |
| importance = np.abs(values).mean() | |
| if importance > self.feature_threshold: | |
| features.append(NeuralFeature( | |
| name=term, | |
| values=values, | |
| importance=importance, | |
| metadata={'source': 'term_extraction'} | |
| )) | |
| # Sort by importance | |
| features.sort(key=lambda x: x.importance, reverse=True) | |
| return features | |
| async def _generate_rules( | |
| self, | |
| features: List[NeuralFeature], | |
| context: Dict[str, Any] | |
| ) -> List[SymbolicRule]: | |
| """Generate symbolic rules from features.""" | |
| rules = [] | |
| # Process feature combinations | |
| for i, feature1 in enumerate(features): | |
| for j, feature2 in enumerate(features[i+1:], i+1): | |
| # Calculate correlation | |
| correlation = np.corrcoef(feature1.values, feature2.values)[0, 1] | |
| if abs(correlation) > self.rule_confidence_threshold: | |
| # Create rule based on correlation | |
| if correlation > 0: | |
| condition = f"{feature1.name} AND {feature2.name}" | |
| conclusion = "positively_correlated" | |
| else: | |
| condition = f"{feature1.name} XOR {feature2.name}" | |
| conclusion = "negatively_correlated" | |
| rules.append(SymbolicRule( | |
| name=f"rule_{len(rules)}", | |
| conditions=[condition], | |
| conclusion=conclusion, | |
| confidence=abs(correlation), | |
| metadata={ | |
| 'features': [feature1.name, feature2.name], | |
| 'correlation': correlation | |
| } | |
| )) | |
| if len(rules) >= self.max_rules: | |
| break | |
| if len(rules) >= self.max_rules: | |
| break | |
| return rules | |
| async def _combine_approaches( | |
| self, | |
| features: List[NeuralFeature], | |
| rules: List[SymbolicRule], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Combine neural and symbolic approaches.""" | |
| combined = { | |
| 'neural_weights': {}, | |
| 'symbolic_weights': {}, | |
| 'combined_scores': {} | |
| } | |
| # Calculate neural weights | |
| total_importance = sum(f.importance for f in features) | |
| if total_importance > 0: | |
| combined['neural_weights'] = { | |
| f.name: f.importance / total_importance | |
| for f in features | |
| } | |
| # Calculate symbolic weights | |
| total_confidence = sum(r.confidence for r in rules) | |
| if total_confidence > 0: | |
| combined['symbolic_weights'] = { | |
| r.name: r.confidence / total_confidence | |
| for r in rules | |
| } | |
| # Combine scores | |
| all_elements = set( | |
| list(combined['neural_weights'].keys()) + | |
| list(combined['symbolic_weights'].keys()) | |
| ) | |
| for element in all_elements: | |
| neural_score = combined['neural_weights'].get(element, 0) | |
| symbolic_score = combined['symbolic_weights'].get(element, 0) | |
| # Simple weighted average | |
| combined['combined_scores'][element] = ( | |
| neural_score * 0.6 + # Favor neural slightly | |
| symbolic_score * 0.4 | |
| ) | |
| return combined | |
| async def _generate_analysis( | |
| self, | |
| combined: Dict[str, Any], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Generate neurosymbolic analysis.""" | |
| # Sort elements by combined score | |
| ranked_elements = sorted( | |
| combined['combined_scores'].items(), | |
| key=lambda x: x[1], | |
| reverse=True | |
| ) | |
| # Calculate statistics | |
| scores = list(combined['combined_scores'].values()) | |
| mean = np.mean(scores) if scores else 0 | |
| std = np.std(scores) if scores else 0 | |
| # Calculate entropy | |
| entropy = -sum( | |
| s * np.log2(s) if s > 0 else 0 | |
| for s in combined['combined_scores'].values() | |
| ) | |
| return { | |
| 'top_element': ranked_elements[0][0] if ranked_elements else '', | |
| 'score': ranked_elements[0][1] if ranked_elements else 0, | |
| 'alternatives': [ | |
| {'name': name, 'score': score} | |
| for name, score in ranked_elements[1:] | |
| ], | |
| 'statistics': { | |
| 'mean': mean, | |
| 'std': std, | |
| 'entropy': entropy | |
| } | |
| } | |
| def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
| """Format analysis into readable text.""" | |
| sections = [] | |
| # Top element | |
| if analysis['top_element']: | |
| sections.append( | |
| f"Most significant element: {analysis['top_element']} " | |
| f"(score: {analysis['score']:.2%})" | |
| ) | |
| # Alternative elements | |
| if analysis['alternatives']: | |
| sections.append("\nAlternative elements:") | |
| for alt in analysis['alternatives']: | |
| sections.append( | |
| f"- {alt['name']}: {alt['score']:.2%}" | |
| ) | |
| # Statistics | |
| stats = analysis['statistics'] | |
| sections.append("\nAnalysis statistics:") | |
| sections.append(f"- Mean score: {stats['mean']:.2%}") | |
| sections.append(f"- Standard deviation: {stats['std']:.2%}") | |
| sections.append(f"- Information entropy: {stats['entropy']:.2f} bits") | |
| return "\n".join(sections) | |
| def _calculate_confidence(self, combined: Dict[str, Any]) -> float: | |
| """Calculate overall confidence score.""" | |
| if not combined['combined_scores']: | |
| return 0.0 | |
| # Base confidence | |
| confidence = 0.5 | |
| # Get scores | |
| scores = list(combined['combined_scores'].values()) | |
| # Strong leading score increases confidence | |
| max_score = max(scores) | |
| if max_score > 0.8: | |
| confidence += 0.3 | |
| elif max_score > 0.6: | |
| confidence += 0.2 | |
| elif max_score > 0.4: | |
| confidence += 0.1 | |
| # Low entropy (clear distinction) increases confidence | |
| entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores) | |
| max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy | |
| if entropy < 0.3 * max_entropy: | |
| confidence += 0.2 | |
| elif entropy < 0.6 * max_entropy: | |
| confidence += 0.1 | |
| return min(confidence, 1.0) | |