Spaces:
Runtime error
Runtime error
| """Advanced multimodal reasoning combining different types of information.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class ModalityFeatures: | |
| """Features extracted from different modalities.""" | |
| text: List[Dict[str, Any]] | |
| image: Optional[List[Dict[str, Any]]] = None | |
| audio: Optional[List[Dict[str, Any]]] = None | |
| video: Optional[List[Dict[str, Any]]] = None | |
| structured: Optional[List[Dict[str, Any]]] = None | |
| class MultiModalReasoning(ReasoningStrategy): | |
| """ | |
| Advanced multimodal reasoning that: | |
| 1. Processes different types of information | |
| 2. Aligns cross-modal features | |
| 3. Integrates multimodal context | |
| 4. Generates coherent responses | |
| 5. Handles uncertainty | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize multimodal reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Configure model repositories | |
| self.models = self.config.get('models', { | |
| 'img2img': { | |
| 'repo_id': 'enhanceaiteam/Flux-Uncensored-V2', | |
| 'filename': 'Flux-Uncensored-V2.safetensors' | |
| }, | |
| 'img2vid': { | |
| 'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt', | |
| 'filename': 'svd_xt.safetensors' | |
| }, | |
| 'any2any': { | |
| 'repo_id': 'deepseek-ai/JanusFlow-1.3B', | |
| 'filename': 'janusflow-1.3b.safetensors' | |
| } | |
| }) | |
| # Configure modality weights | |
| self.weights = self.config.get('modality_weights', { | |
| 'text': 0.4, | |
| 'image': 0.3, | |
| 'audio': 0.1, | |
| 'video': 0.1, | |
| 'structured': 0.1 | |
| }) | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Apply multimodal reasoning to process and integrate different types of information. | |
| Args: | |
| query: The input query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| Dict containing reasoning results and confidence scores | |
| """ | |
| try: | |
| # Process across modalities | |
| modalities = await self._process_modalities(query, context) | |
| # Align cross-modal information | |
| alignment = await self._cross_modal_alignment(modalities, context) | |
| # Integrate aligned information | |
| integration = await self._integrated_analysis(alignment, context) | |
| # Generate final response | |
| response = await self._generate_response(integration, context) | |
| return { | |
| 'answer': response.get('text', ''), | |
| 'confidence': self._calculate_confidence(integration), | |
| 'modalities': modalities, | |
| 'alignment': alignment, | |
| 'integration': integration | |
| } | |
| except Exception as e: | |
| logging.error(f"Multimodal reasoning failed: {str(e)}") | |
| return { | |
| 'error': f"Multimodal reasoning failed: {str(e)}", | |
| 'confidence': 0.0 | |
| } | |
| async def _process_modalities( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> Dict[str, List[Dict[str, Any]]]: | |
| """Process query across different modalities.""" | |
| modalities = {} | |
| # Process text | |
| if 'text' in context: | |
| modalities['text'] = self._process_text(context['text']) | |
| # Process images | |
| if 'images' in context: | |
| modalities['image'] = self._process_images(context['images']) | |
| # Process audio | |
| if 'audio' in context: | |
| modalities['audio'] = self._process_audio(context['audio']) | |
| # Process video | |
| if 'video' in context: | |
| modalities['video'] = self._process_video(context['video']) | |
| # Process structured data | |
| if 'structured' in context: | |
| modalities['structured'] = self._process_structured(context['structured']) | |
| return modalities | |
| async def _cross_modal_alignment( | |
| self, | |
| modalities: Dict[str, List[Dict[str, Any]]], | |
| context: Dict[str, Any] | |
| ) -> List[Dict[str, Any]]: | |
| """Align information across different modalities.""" | |
| alignments = [] | |
| # Get all modality pairs | |
| modality_pairs = [ | |
| (m1, m2) for i, m1 in enumerate(modalities.keys()) | |
| for m2 in list(modalities.keys())[i+1:] | |
| ] | |
| # Align each pair | |
| for mod1, mod2 in modality_pairs: | |
| items1 = modalities[mod1] | |
| items2 = modalities[mod2] | |
| # Calculate cross-modal similarities | |
| for item1 in items1: | |
| for item2 in items2: | |
| similarity = self._calculate_similarity(item1, item2) | |
| if similarity > 0.7: # Alignment threshold | |
| alignments.append({ | |
| 'modality1': mod1, | |
| 'modality2': mod2, | |
| 'item1': item1, | |
| 'item2': item2, | |
| 'similarity': similarity | |
| }) | |
| return alignments | |
| def _calculate_similarity( | |
| self, | |
| item1: Dict[str, Any], | |
| item2: Dict[str, Any] | |
| ) -> float: | |
| """Calculate similarity between two items from different modalities.""" | |
| # Simple feature overlap for now | |
| features1 = set(str(v) for v in item1.values()) | |
| features2 = set(str(v) for v in item2.values()) | |
| if not features1 or not features2: | |
| return 0.0 | |
| overlap = len(features1.intersection(features2)) | |
| total = len(features1.union(features2)) | |
| return overlap / total if total > 0 else 0.0 | |
| async def _integrated_analysis( | |
| self, | |
| alignment: List[Dict[str, Any]], | |
| context: Dict[str, Any] | |
| ) -> List[Dict[str, Any]]: | |
| """Perform integrated analysis of aligned information.""" | |
| integrated = [] | |
| # Group alignments by similarity | |
| similarity_groups = defaultdict(list) | |
| for align in alignment: | |
| similarity_groups[align['similarity']].append(align) | |
| # Process groups in order of similarity | |
| for similarity, group in sorted( | |
| similarity_groups.items(), | |
| key=lambda x: x[0], | |
| reverse=True | |
| ): | |
| # Combine aligned features | |
| for align in group: | |
| integrated.append({ | |
| 'features': { | |
| **align['item1'], | |
| **align['item2'] | |
| }, | |
| 'modalities': [align['modality1'], align['modality2']], | |
| 'confidence': align['similarity'] | |
| }) | |
| return integrated | |
| async def _generate_response( | |
| self, | |
| integration: List[Dict[str, Any]], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Generate coherent response from integrated analysis.""" | |
| if not integration: | |
| return {'text': '', 'confidence': 0.0} | |
| # Combine all integrated features | |
| all_features = {} | |
| for item in integration: | |
| all_features.update(item['features']) | |
| # Generate response text | |
| response_text = [] | |
| # Add main findings | |
| response_text.append("Main findings across modalities:") | |
| for feature, value in all_features.items(): | |
| response_text.append(f"- {feature}: {value}") | |
| # Add confidence | |
| confidence = sum(item['confidence'] for item in integration) / len(integration) | |
| response_text.append(f"\nOverall confidence: {confidence:.2f}") | |
| return { | |
| 'text': "\n".join(response_text), | |
| 'confidence': confidence | |
| } | |
| def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float: | |
| """Calculate overall confidence score.""" | |
| if not integration: | |
| return 0.0 | |
| # Base confidence | |
| confidence = 0.5 | |
| # Adjust based on number of modalities | |
| unique_modalities = set() | |
| for item in integration: | |
| unique_modalities.update(item['modalities']) | |
| modality_bonus = len(unique_modalities) * 0.1 | |
| confidence += min(modality_bonus, 0.3) | |
| # Adjust based on integration quality | |
| avg_similarity = sum( | |
| item['confidence'] for item in integration | |
| ) / len(integration) | |
| confidence += avg_similarity * 0.2 | |
| return min(confidence, 1.0) | |
| def _process_text(self, text: str) -> List[Dict[str, Any]]: | |
| """Process text modality.""" | |
| # Simple text processing for now | |
| return [{'text': text}] | |
| def _process_images(self, images: List[str]) -> List[Dict[str, Any]]: | |
| """Process image modality.""" | |
| # Simple image processing for now | |
| return [{'image': image} for image in images] | |
| def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]: | |
| """Process audio modality.""" | |
| # Simple audio processing for now | |
| return [{'audio': audio_file} for audio_file in audio] | |
| def _process_video(self, video: List[str]) -> List[Dict[str, Any]]: | |
| """Process video modality.""" | |
| # Simple video processing for now | |
| return [{'video': video_file} for video_file in video] | |
| def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Process structured data modality.""" | |
| # Simple structured data processing for now | |
| return [{'structured': structured}] | |