Spaces:
Runtime error
Runtime error
| """Advanced meta-learning strategy for adaptive reasoning.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class MetaTask: | |
| """Meta-learning task with parameters and performance metrics.""" | |
| name: str | |
| parameters: Dict[str, Any] | |
| metrics: Dict[str, float] | |
| history: List[Dict[str, Any]] = field(default_factory=list) | |
| class MetaLearningStrategy(ReasoningStrategy): | |
| """ | |
| Advanced meta-learning strategy that: | |
| 1. Adapts to new tasks | |
| 2. Learns from experience | |
| 3. Optimizes parameters | |
| 4. Transfers knowledge | |
| 5. Improves over time | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize meta-learning strategy.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Configure parameters | |
| self.learning_rate = self.config.get('learning_rate', 0.01) | |
| self.memory_size = self.config.get('memory_size', 100) | |
| self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) | |
| # Initialize task memory | |
| self.task_memory: List[MetaTask] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Apply meta-learning to adapt and optimize reasoning. | |
| Args: | |
| query: The input query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| Dict containing reasoning results and confidence scores | |
| """ | |
| try: | |
| # Identify similar tasks | |
| similar_tasks = await self._find_similar_tasks(query, context) | |
| # Adapt parameters | |
| adapted_params = await self._adapt_parameters(similar_tasks, context) | |
| # Apply meta-learning | |
| results = await self._apply_meta_learning( | |
| query, | |
| adapted_params, | |
| context | |
| ) | |
| # Update memory | |
| await self._update_memory(query, results, context) | |
| # Generate analysis | |
| analysis = await self._generate_analysis(results, context) | |
| return { | |
| 'answer': self._format_analysis(analysis), | |
| 'confidence': self._calculate_confidence(results), | |
| 'similar_tasks': similar_tasks, | |
| 'adapted_params': adapted_params, | |
| 'results': results, | |
| 'analysis': analysis | |
| } | |
| except Exception as e: | |
| logging.error(f"Meta-learning failed: {str(e)}") | |
| return { | |
| 'error': f"Meta-learning failed: {str(e)}", | |
| 'confidence': 0.0 | |
| } | |
| async def _find_similar_tasks( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[MetaTask]: | |
| """Find similar tasks in memory.""" | |
| similar_tasks = [] | |
| # Extract query features | |
| query_features = self._extract_features(query) | |
| for task in self.task_memory: | |
| # Calculate similarity | |
| similarity = self._calculate_similarity( | |
| query_features, | |
| self._extract_features(task.name) | |
| ) | |
| if similarity > self.adaptation_threshold: | |
| similar_tasks.append(task) | |
| # Sort by similarity | |
| similar_tasks.sort( | |
| key=lambda x: np.mean(list(x.metrics.values())), | |
| reverse=True | |
| ) | |
| return similar_tasks | |
| def _extract_features(self, text: str) -> np.ndarray: | |
| """Extract features from text.""" | |
| # Simple bag of words for now | |
| words = set(text.lower().split()) | |
| return np.array([hash(word) % 100 for word in words]) | |
| def _calculate_similarity( | |
| self, | |
| features1: np.ndarray, | |
| features2: np.ndarray | |
| ) -> float: | |
| """Calculate similarity between feature sets.""" | |
| # Simple Jaccard similarity | |
| intersection = np.intersect1d(features1, features2) | |
| union = np.union1d(features1, features2) | |
| return len(intersection) / len(union) if len(union) > 0 else 0 | |
| async def _adapt_parameters( | |
| self, | |
| similar_tasks: List[MetaTask], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Adapt parameters based on similar tasks.""" | |
| if not similar_tasks: | |
| return self.config.copy() | |
| adapted_params = {} | |
| # Weight tasks by performance | |
| total_performance = sum( | |
| np.mean(list(task.metrics.values())) | |
| for task in similar_tasks | |
| ) | |
| if total_performance > 0: | |
| # Weighted average of parameters | |
| for param_name in self.config: | |
| adapted_params[param_name] = sum( | |
| task.parameters.get(param_name, self.config[param_name]) * | |
| (np.mean(list(task.metrics.values())) / total_performance) | |
| for task in similar_tasks | |
| ) | |
| else: | |
| adapted_params = self.config.copy() | |
| return adapted_params | |
| async def _apply_meta_learning( | |
| self, | |
| query: str, | |
| parameters: Dict[str, Any], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply meta-learning with adapted parameters.""" | |
| results = { | |
| 'query': query, | |
| 'parameters': parameters, | |
| 'metrics': {} | |
| } | |
| # Apply learning rate | |
| for param_name, value in parameters.items(): | |
| if isinstance(value, (int, float)): | |
| results['parameters'][param_name] = ( | |
| value * (1 - self.learning_rate) + | |
| self.config[param_name] * self.learning_rate | |
| ) | |
| # Calculate performance metrics | |
| results['metrics'] = { | |
| 'adaptation_score': np.mean([ | |
| p / self.config[name] | |
| for name, p in results['parameters'].items() | |
| if isinstance(p, (int, float)) and self.config[name] != 0 | |
| ]), | |
| 'novelty_score': 1 - max( | |
| self._calculate_similarity( | |
| self._extract_features(query), | |
| self._extract_features(task.name) | |
| ) | |
| for task in self.task_memory | |
| ) if self.task_memory else 1.0 | |
| } | |
| return results | |
| async def _update_memory( | |
| self, | |
| query: str, | |
| results: Dict[str, Any], | |
| context: Dict[str, Any] | |
| ) -> None: | |
| """Update task memory.""" | |
| # Create new task | |
| task = MetaTask( | |
| name=query, | |
| parameters=results['parameters'], | |
| metrics=results['metrics'], | |
| history=[{ | |
| 'timestamp': datetime.now().isoformat(), | |
| 'context': context, | |
| 'results': results | |
| }] | |
| ) | |
| # Add to memory | |
| self.task_memory.append(task) | |
| # Maintain memory size | |
| if len(self.task_memory) > self.memory_size: | |
| # Remove worst performing task | |
| self.task_memory.sort( | |
| key=lambda x: np.mean(list(x.metrics.values())) | |
| ) | |
| self.task_memory.pop(0) | |
| async def _generate_analysis( | |
| self, | |
| results: Dict[str, Any], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Generate meta-learning analysis.""" | |
| # Calculate statistics | |
| param_stats = { | |
| name: { | |
| 'value': value, | |
| 'adaptation': value / self.config[name] | |
| if isinstance(value, (int, float)) and self.config[name] != 0 | |
| else 1.0 | |
| } | |
| for name, value in results['parameters'].items() | |
| } | |
| # Calculate overall metrics | |
| metrics = { | |
| 'adaptation_score': results['metrics']['adaptation_score'], | |
| 'novelty_score': results['metrics']['novelty_score'], | |
| 'memory_usage': len(self.task_memory) / self.memory_size | |
| } | |
| return { | |
| 'parameters': param_stats, | |
| 'metrics': metrics, | |
| 'memory_size': len(self.task_memory), | |
| 'total_tasks_seen': len(self.task_memory) | |
| } | |
| def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
| """Format analysis into readable text.""" | |
| sections = [] | |
| # Parameter adaptations | |
| sections.append("Parameter adaptations:") | |
| for name, stats in analysis['parameters'].items(): | |
| sections.append( | |
| f"- {name}: {stats['value']:.2f} " | |
| f"({stats['adaptation']:.1%} of original)" | |
| ) | |
| # Performance metrics | |
| sections.append("\nPerformance metrics:") | |
| metrics = analysis['metrics'] | |
| sections.append(f"- Adaptation score: {metrics['adaptation_score']:.1%}") | |
| sections.append(f"- Novelty score: {metrics['novelty_score']:.1%}") | |
| sections.append(f"- Memory usage: {metrics['memory_usage']:.1%}") | |
| # Memory statistics | |
| sections.append("\nMemory statistics:") | |
| sections.append(f"- Current tasks in memory: {analysis['memory_size']}") | |
| sections.append(f"- Total tasks seen: {analysis['total_tasks_seen']}") | |
| return "\n".join(sections) | |
| def _calculate_confidence(self, results: Dict[str, Any]) -> float: | |
| """Calculate overall confidence score.""" | |
| if not results.get('metrics'): | |
| return 0.0 | |
| # Base confidence | |
| confidence = 0.5 | |
| # Adjust based on adaptation score | |
| adaptation_score = results['metrics']['adaptation_score'] | |
| if adaptation_score > 0.8: | |
| confidence += 0.3 | |
| elif adaptation_score > 0.6: | |
| confidence += 0.2 | |
| elif adaptation_score > 0.4: | |
| confidence += 0.1 | |
| # Adjust based on novelty | |
| novelty_score = results['metrics']['novelty_score'] | |
| if novelty_score < 0.2: # Very similar to known tasks | |
| confidence += 0.2 | |
| elif novelty_score < 0.4: | |
| confidence += 0.1 | |
| return min(confidence, 1.0) | |
| def get_performance_metrics(self) -> Dict[str, Any]: | |
| """Get current performance metrics.""" | |
| return { | |
| "success_rate": 0.0, | |
| "adaptation_rate": 0.0, | |
| "exploration_count": 0, | |
| "episode_count": len(self.task_memory), | |
| "pattern_count": 0, | |
| "learning_rate": self.learning_rate, | |
| "exploration_rate": 0.0 | |
| } | |
| def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]: | |
| """Get top performing patterns.""" | |
| return [] | |
| def clear_memory(self): | |
| """Clear learning memory.""" | |
| self.task_memory.clear() | |