Spaces:
Runtime error
Runtime error
File size: 14,968 Bytes
dcb2a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
"""UI components for venture strategies and analysis."""
import gradio as gr
import json
from typing import Dict, Any, List
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
from datetime import datetime
class VentureUI:
"""UI for venture strategies and analysis."""
def __init__(self, api_client):
self.api_client = api_client
def create_interface(self):
"""Create Gradio interface."""
with gr.Blocks(title="Venture Strategy Optimizer") as interface:
gr.Markdown("# Venture Strategy Optimizer")
with gr.Tabs():
# Venture Analysis Tab
with gr.Tab("Venture Analysis"):
with gr.Row():
with gr.Column():
venture_type = gr.Dropdown(
choices=self._get_venture_types(),
label="Venture Type"
)
query = gr.Textbox(
lines=3,
label="Analysis Query"
)
analyze_btn = gr.Button("Analyze Venture")
with gr.Column():
analysis_output = gr.JSON(label="Analysis Results")
metrics_plot = gr.Plot(label="Key Metrics")
analyze_btn.click(
fn=self._analyze_venture,
inputs=[venture_type, query],
outputs=[analysis_output, metrics_plot]
)
# Market Analysis Tab
with gr.Tab("Market Analysis"):
with gr.Row():
with gr.Column():
segment = gr.Textbox(
label="Market Segment"
)
market_btn = gr.Button("Analyze Market")
with gr.Column():
market_output = gr.JSON(label="Market Analysis")
market_plot = gr.Plot(label="Market Trends")
market_btn.click(
fn=self._analyze_market,
inputs=[segment],
outputs=[market_output, market_plot]
)
# Portfolio Optimization Tab
with gr.Tab("Portfolio Optimization"):
with gr.Row():
with gr.Column():
ventures = gr.CheckboxGroup(
choices=self._get_venture_types(),
label="Select Ventures"
)
optimize_btn = gr.Button("Optimize Portfolio")
with gr.Column():
portfolio_output = gr.JSON(label="Portfolio Strategy")
portfolio_plot = gr.Plot(label="Portfolio Allocation")
optimize_btn.click(
fn=self._optimize_portfolio,
inputs=[ventures],
outputs=[portfolio_output, portfolio_plot]
)
# Monetization Strategy Tab
with gr.Tab("Monetization Strategy"):
with gr.Row():
with gr.Column():
monetization_type = gr.Dropdown(
choices=self._get_venture_types(),
label="Venture Type"
)
monetize_btn = gr.Button("Optimize Monetization")
with gr.Column():
monetization_output = gr.JSON(label="Monetization Strategy")
revenue_plot = gr.Plot(label="Revenue Projections")
monetize_btn.click(
fn=self._optimize_monetization,
inputs=[monetization_type],
outputs=[monetization_output, revenue_plot]
)
# Insights Dashboard Tab
with gr.Tab("Insights Dashboard"):
with gr.Row():
refresh_btn = gr.Button("Refresh Insights")
with gr.Row():
with gr.Column():
market_insights = gr.JSON(label="Market Insights")
market_trends = gr.Plot(label="Market Trends")
with gr.Column():
portfolio_insights = gr.JSON(label="Portfolio Insights")
portfolio_trends = gr.Plot(label="Portfolio Performance")
refresh_btn.click(
fn=self._refresh_insights,
outputs=[
market_insights, market_trends,
portfolio_insights, portfolio_trends
]
)
return interface
def _get_venture_types(self) -> List[str]:
"""Get available venture types."""
try:
response = self.api_client.list_strategies()
return response.get("strategies", [])
except Exception as e:
print(f"Error getting venture types: {e}")
return []
def _analyze_venture(self,
venture_type: str,
query: str) -> tuple[Dict[str, Any], go.Figure]:
"""Analyze venture opportunity."""
try:
# Get analysis
response = self.api_client.analyze_venture({
"venture_type": venture_type,
"query": query
})
result = response.get("result", {})
# Create visualization
fig = self._create_venture_plot(result)
return result, fig
except Exception as e:
print(f"Error in venture analysis: {e}")
return {"error": str(e)}, go.Figure()
def _analyze_market(self,
segment: str) -> tuple[Dict[str, Any], go.Figure]:
"""Analyze market opportunity."""
try:
# Get analysis
response = self.api_client.analyze_market({
"segment": segment
})
result = response.get("result", {})
# Create visualization
fig = self._create_market_plot(result)
return result, fig
except Exception as e:
print(f"Error in market analysis: {e}")
return {"error": str(e)}, go.Figure()
def _optimize_portfolio(self,
ventures: List[str]) -> tuple[Dict[str, Any], go.Figure]:
"""Optimize venture portfolio."""
try:
# Get optimization
response = self.api_client.optimize_portfolio({
"ventures": ventures
})
result = response.get("result", {})
# Create visualization
fig = self._create_portfolio_plot(result)
return result, fig
except Exception as e:
print(f"Error in portfolio optimization: {e}")
return {"error": str(e)}, go.Figure()
def _optimize_monetization(self,
venture_type: str) -> tuple[Dict[str, Any], go.Figure]:
"""Optimize monetization strategy."""
try:
# Get optimization
response = self.api_client.optimize_monetization({
"venture_type": venture_type
})
result = response.get("result", {})
# Create visualization
fig = self._create_revenue_plot(result)
return result, fig
except Exception as e:
print(f"Error in monetization optimization: {e}")
return {"error": str(e)}, go.Figure()
def _refresh_insights(self) -> tuple[Dict[str, Any], go.Figure,
Dict[str, Any], go.Figure]:
"""Refresh insights dashboard."""
try:
# Get insights
market_response = self.api_client.get_market_insights()
portfolio_response = self.api_client.get_portfolio_insights()
market_insights = market_response.get("insights", {})
portfolio_insights = portfolio_response.get("insights", {})
# Create visualizations
market_fig = self._create_market_trends_plot(market_insights)
portfolio_fig = self._create_portfolio_trends_plot(portfolio_insights)
return market_insights, market_fig, portfolio_insights, portfolio_fig
except Exception as e:
print(f"Error refreshing insights: {e}")
return (
{"error": str(e)}, go.Figure(),
{"error": str(e)}, go.Figure()
)
def _create_venture_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create venture analysis visualization."""
try:
metrics = data.get("metrics", {})
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=[
metrics.get("market_score", 0),
metrics.get("opportunity_score", 0),
metrics.get("risk_score", 0),
metrics.get("growth_potential", 0),
metrics.get("profitability", 0)
],
theta=[
"Market Score",
"Opportunity Score",
"Risk Score",
"Growth Potential",
"Profitability"
],
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=False
)
return fig
except Exception as e:
print(f"Error creating venture plot: {e}")
return go.Figure()
def _create_market_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create market analysis visualization."""
try:
trends = data.get("trend_analysis", {})
df = pd.DataFrame([
{
"Trend": trend["name"],
"Impact": trend["impact"],
"Potential": trend["market_potential"],
"Risk": trend["risk_level"]
}
for trend in trends
])
fig = px.scatter(
df,
x="Impact",
y="Potential",
size="Risk",
hover_data=["Trend"],
title="Market Trends Analysis"
)
return fig
except Exception as e:
print(f"Error creating market plot: {e}")
return go.Figure()
def _create_portfolio_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create portfolio optimization visualization."""
try:
allocation = data.get("allocation", {})
fig = go.Figure(data=[
go.Bar(
name=venture,
x=["Resources", "Priority", "Risk"],
y=[
sum(resources.values()),
priority,
len(constraints)
]
)
for venture, (resources, priority, constraints) in allocation.items()
])
fig.update_layout(
barmode='group',
title="Portfolio Allocation"
)
return fig
except Exception as e:
print(f"Error creating portfolio plot: {e}")
return go.Figure()
def _create_revenue_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create revenue projection visualization."""
try:
projections = data.get("projections", {})
months = list(range(12))
revenue = [
projections.get("monthly_revenue", {}).get(str(m), 0)
for m in months
]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=months,
y=revenue,
mode='lines+markers',
name='Revenue'
))
fig.update_layout(
title="Revenue Projections",
xaxis_title="Month",
yaxis_title="Revenue ($)"
)
return fig
except Exception as e:
print(f"Error creating revenue plot: {e}")
return go.Figure()
def _create_market_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create market trends visualization."""
try:
trends = data.get("trend_insights", [])
df = pd.DataFrame(trends)
fig = px.scatter(
df,
x="impact",
y="potential",
size="risk",
hover_data=["name"],
title="Market Trends Overview"
)
return fig
except Exception as e:
print(f"Error creating market trends plot: {e}")
return go.Figure()
def _create_portfolio_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
"""Create portfolio trends visualization."""
try:
metrics = data.get("portfolio_metrics", {})
fig = go.Figure()
fig.add_trace(go.Indicator(
mode="gauge+number",
value=metrics.get("total_revenue", 0),
title={'text': "Total Revenue ($M)"},
gauge={'axis': {'range': [None, 10]}}
))
return fig
except Exception as e:
print(f"Error creating portfolio trends plot: {e}")
return go.Figure()
|