Spaces:
Runtime error
Runtime error
File size: 15,369 Bytes
dcb2a99 437028e dcb2a99 437028e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
"""Advanced market analysis tools for venture strategies."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class MarketSegment:
"""Market segment analysis."""
size: float
growth_rate: float
cagr: float
competition: List[Dict[str, Any]]
barriers: List[str]
opportunities: List[str]
risks: List[str]
@dataclass
class CompetitorAnalysis:
"""Competitor analysis."""
name: str
market_share: float
strengths: List[str]
weaknesses: List[str]
strategy: str
revenue: Optional[float]
valuation: Optional[float]
@dataclass
class MarketTrend:
"""Market trend analysis."""
name: str
impact: float
timeline: str
adoption_rate: float
market_potential: float
risk_level: float
class MarketAnalyzer:
"""
Advanced market analysis toolkit that:
1. Analyzes market segments
2. Tracks competitors
3. Identifies trends
4. Predicts opportunities
5. Assesses risks
"""
def __init__(self):
self.segments: Dict[str, MarketSegment] = {}
self.competitors: Dict[str, CompetitorAnalysis] = {}
self.trends: List[MarketTrend] = []
async def analyze_market(self,
segment: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Perform comprehensive market analysis."""
try:
# Segment analysis
segment_analysis = await self._analyze_segment(segment, context)
# Competitor analysis
competitor_analysis = await self._analyze_competitors(segment, context)
# Trend analysis
trend_analysis = await self._analyze_trends(segment, context)
# Opportunity analysis
opportunity_analysis = await self._analyze_opportunities(
segment_analysis, competitor_analysis, trend_analysis, context)
# Risk analysis
risk_analysis = await self._analyze_risks(
segment_analysis, competitor_analysis, trend_analysis, context)
return {
"success": True,
"segment_analysis": segment_analysis,
"competitor_analysis": competitor_analysis,
"trend_analysis": trend_analysis,
"opportunity_analysis": opportunity_analysis,
"risk_analysis": risk_analysis,
"metrics": {
"market_score": self._calculate_market_score(segment_analysis),
"opportunity_score": self._calculate_opportunity_score(opportunity_analysis),
"risk_score": self._calculate_risk_score(risk_analysis)
}
}
except Exception as e:
logging.error(f"Error in market analysis: {str(e)}")
return {"success": False, "error": str(e)}
async def _analyze_segment(self,
segment: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze market segment."""
prompt = f"""
Analyze market segment:
Segment: {segment}
Context: {json.dumps(context)}
Analyze:
1. Market size and growth
2. Customer segments
3. Value chain
4. Entry barriers
5. Competitive dynamics
Format as:
[Analysis]
Size: ...
Growth: ...
Segments: ...
Value_Chain: ...
Barriers: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_segment_analysis(response["answer"])
async def _analyze_competitors(self,
segment: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze competitors in segment."""
prompt = f"""
Analyze competitors:
Segment: {segment}
Context: {json.dumps(context)}
For each competitor analyze:
1. Market share
2. Business model
3. Strengths/weaknesses
4. Strategy
5. Performance metrics
Format as:
[Competitor1]
Share: ...
Model: ...
Strengths: ...
Weaknesses: ...
Strategy: ...
Metrics: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_competitor_analysis(response["answer"])
async def _analyze_trends(self,
segment: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze market trends."""
prompt = f"""
Analyze market trends:
Segment: {segment}
Context: {json.dumps(context)}
Analyze trends in:
1. Technology
2. Customer behavior
3. Business models
4. Regulation
5. Market dynamics
Format as:
[Trend1]
Type: ...
Impact: ...
Timeline: ...
Adoption: ...
Potential: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_trend_analysis(response["answer"])
async def _analyze_opportunities(self,
segment_analysis: Dict[str, Any],
competitor_analysis: Dict[str, Any],
trend_analysis: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze market opportunities."""
prompt = f"""
Analyze market opportunities:
Segment: {json.dumps(segment_analysis)}
Competitors: {json.dumps(competitor_analysis)}
Trends: {json.dumps(trend_analysis)}
Context: {json.dumps(context)}
Identify opportunities in:
1. Unmet needs
2. Market gaps
3. Innovation potential
4. Scaling potential
5. Value creation
Format as:
[Opportunity1]
Type: ...
Description: ...
Potential: ...
Requirements: ...
Timeline: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_opportunity_analysis(response["answer"])
async def _analyze_risks(self,
segment_analysis: Dict[str, Any],
competitor_analysis: Dict[str, Any],
trend_analysis: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze market risks."""
prompt = f"""
Analyze market risks:
Segment: {json.dumps(segment_analysis)}
Competitors: {json.dumps(competitor_analysis)}
Trends: {json.dumps(trend_analysis)}
Context: {json.dumps(context)}
Analyze risks in:
1. Market dynamics
2. Competition
3. Technology
4. Regulation
5. Execution
Format as:
[Risk1]
Type: ...
Description: ...
Impact: ...
Probability: ...
Mitigation: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_risk_analysis(response["answer"])
def _calculate_market_score(self, analysis: Dict[str, Any]) -> float:
"""Calculate market attractiveness score."""
weights = {
"size": 0.3,
"growth": 0.3,
"competition": 0.2,
"barriers": 0.1,
"dynamics": 0.1
}
scores = {
"size": min(analysis.get("size", 0) / 1e9, 1.0), # Normalize to 1B
"growth": min(analysis.get("growth", 0) / 30, 1.0), # Normalize to 30%
"competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0),
"barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0),
"dynamics": analysis.get("dynamics_score", 0.5)
}
return sum(weights[k] * scores[k] for k in weights)
def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float:
"""Calculate opportunity attractiveness score."""
weights = {
"market_potential": 0.3,
"innovation_potential": 0.2,
"execution_feasibility": 0.2,
"competitive_advantage": 0.2,
"timing": 0.1
}
scores = {
"market_potential": analysis.get("market_potential", 0.5),
"innovation_potential": analysis.get("innovation_potential", 0.5),
"execution_feasibility": analysis.get("execution_feasibility", 0.5),
"competitive_advantage": analysis.get("competitive_advantage", 0.5),
"timing": analysis.get("timing_score", 0.5)
}
return sum(weights[k] * scores[k] for k in weights)
def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float:
"""Calculate risk level score."""
weights = {
"market_risk": 0.2,
"competition_risk": 0.2,
"technology_risk": 0.2,
"regulatory_risk": 0.2,
"execution_risk": 0.2
}
scores = {
"market_risk": analysis.get("market_risk", 0.5),
"competition_risk": analysis.get("competition_risk", 0.5),
"technology_risk": analysis.get("technology_risk", 0.5),
"regulatory_risk": analysis.get("regulatory_risk", 0.5),
"execution_risk": analysis.get("execution_risk", 0.5)
}
return sum(weights[k] * scores[k] for k in weights)
def get_market_insights(self) -> Dict[str, Any]:
"""Get comprehensive market insights."""
return {
"segment_insights": {
segment: {
"size": s.size,
"growth_rate": s.growth_rate,
"cagr": s.cagr,
"opportunity_score": self._calculate_market_score({
"size": s.size,
"growth": s.growth_rate,
"competitors": s.competition,
"barriers": s.barriers
})
}
for segment, s in self.segments.items()
},
"competitor_insights": {
competitor: {
"market_share": c.market_share,
"strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)),
"revenue": c.revenue,
"valuation": c.valuation
}
for competitor, c in self.competitors.items()
},
"trend_insights": [
{
"name": t.name,
"impact": t.impact,
"potential": t.market_potential,
"risk": t.risk_level
}
for t in self.trends
]
}
class MarketAnalysisStrategy(ReasoningStrategy):
"""
Advanced market analysis strategy that combines multiple analytical tools
to provide comprehensive market insights.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize market analysis strategy."""
super().__init__()
self.config = config or {}
self.analyzer = MarketAnalyzer()
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Perform market analysis based on query and context.
Args:
query: The market analysis query
context: Additional context and parameters
Returns:
Dict containing market analysis results and confidence scores
"""
try:
# Extract market segment from query/context
segment = self._extract_segment(query, context)
# Perform market analysis
analysis = await self._analyze_market(segment, context)
# Get insights
insights = self.analyzer.get_market_insights()
# Calculate confidence based on data quality and completeness
confidence = self._calculate_confidence(analysis, insights)
return {
'answer': self._format_insights(insights),
'confidence': confidence,
'analysis': analysis,
'insights': insights,
'segment': segment
}
except Exception as e:
logging.error(f"Market analysis failed: {str(e)}")
return {
'error': f"Market analysis failed: {str(e)}",
'confidence': 0.0
}
def _extract_segment(self, query: str, context: Dict[str, Any]) -> str:
"""Extract market segment from query and context."""
# Use context if available
if 'segment' in context:
return context['segment']
# Default to general market
return 'general'
async def _analyze_market(self, segment: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Perform comprehensive market analysis."""
return await self.analyzer.analyze_market(segment, context)
def _calculate_confidence(self, analysis: Dict[str, Any], insights: Dict[str, Any]) -> float:
"""Calculate confidence score based on analysis quality."""
# Base confidence
confidence = 0.5
# Adjust based on data completeness
if analysis.get('segment_analysis'):
confidence += 0.1
if analysis.get('competitor_analysis'):
confidence += 0.1
if analysis.get('trend_analysis'):
confidence += 0.1
# Adjust based on insight quality
if insights.get('opportunities'):
confidence += 0.1
if insights.get('risks'):
confidence += 0.1
return min(confidence, 1.0)
def _format_insights(self, insights: Dict[str, Any]) -> str:
"""Format market insights into readable text."""
sections = []
if 'market_overview' in insights:
sections.append(f"Market Overview: {insights['market_overview']}")
if 'opportunities' in insights:
opps = insights['opportunities']
sections.append("Key Opportunities:\n- " + "\n- ".join(opps))
if 'risks' in insights:
risks = insights['risks']
sections.append("Key Risks:\n- " + "\n- ".join(risks))
if 'recommendations' in insights:
recs = insights['recommendations']
sections.append("Recommendations:\n- " + "\n- ".join(recs))
return "\n\n".join(sections)
|