File size: 15,138 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""Enhanced learning mechanisms for reasoning strategies."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

@dataclass
class LearningEvent:
    """Event for strategy learning."""
    strategy_type: str
    event_type: str
    data: Dict[str, Any]
    outcome: Optional[float]
    timestamp: datetime = field(default_factory=datetime.now)

class LearningMode(Enum):
    """Types of learning modes."""
    SUPERVISED = "supervised"
    REINFORCEMENT = "reinforcement"
    ACTIVE = "active"
    TRANSFER = "transfer"
    META = "meta"
    ENSEMBLE = "ensemble"

@dataclass
class LearningState:
    """State for learning process."""
    mode: LearningMode
    parameters: Dict[str, Any]
    history: List[LearningEvent]
    metrics: Dict[str, float]
    metadata: Dict[str, Any] = field(default_factory=dict)

class EnhancedLearningManager:
    """
    Advanced learning manager that:
    1. Implements multiple learning modes
    2. Tracks learning progress
    3. Adapts learning parameters
    4. Optimizes strategy performance
    5. Transfers knowledge between strategies
    """
    
    def __init__(self,
                 learning_rate: float = 0.1,
                 exploration_rate: float = 0.2,
                 memory_size: int = 1000):
        self.learning_rate = learning_rate
        self.exploration_rate = exploration_rate
        self.memory_size = memory_size
        
        # Learning states
        self.states: Dict[str, LearningState] = {}
        
        # Performance tracking
        self.performance_history: List[Dict[str, Any]] = []
        self.strategy_metrics: Dict[str, List[float]] = defaultdict(list)
        
        # Knowledge transfer
        self.knowledge_base: Dict[str, Any] = {}
        self.transfer_history: List[Dict[str, Any]] = []
        
    async def learn(self,
                   strategy_type: str,
                   event: LearningEvent,
                   context: Dict[str, Any]) -> Dict[str, Any]:
        """Learn from strategy execution event."""
        try:
            # Initialize or get learning state
            state = self._get_learning_state(strategy_type)
            
            # Select learning mode
            mode = await self._select_learning_mode(event, state, context)
            
            # Execute learning
            if mode == LearningMode.SUPERVISED:
                result = await self._supervised_learning(event, state, context)
            elif mode == LearningMode.REINFORCEMENT:
                result = await self._reinforcement_learning(event, state, context)
            elif mode == LearningMode.ACTIVE:
                result = await self._active_learning(event, state, context)
            elif mode == LearningMode.TRANSFER:
                result = await self._transfer_learning(event, state, context)
            elif mode == LearningMode.META:
                result = await self._meta_learning(event, state, context)
            elif mode == LearningMode.ENSEMBLE:
                result = await self._ensemble_learning(event, state, context)
            else:
                raise ValueError(f"Unsupported learning mode: {mode}")
            
            # Update state
            self._update_learning_state(state, result)
            
            # Record performance
            self._record_performance(strategy_type, result)
            
            return result
            
        except Exception as e:
            logging.error(f"Error in learning: {str(e)}")
            return {
                "success": False,
                "error": str(e),
                "mode": mode.value if 'mode' in locals() else None
            }

    async def _supervised_learning(self,
                                 event: LearningEvent,
                                 state: LearningState,
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement supervised learning."""
        # Extract features and labels
        features = await self._extract_features(event.data, context)
        labels = event.outcome if event.outcome is not None else 0.0
        
        # Train model
        model_update = await self._update_model(features, labels, state, context)
        
        # Validate performance
        validation = await self._validate_model(model_update, state, context)
        
        return {
            "success": True,
            "mode": LearningMode.SUPERVISED.value,
            "model_update": model_update,
            "validation": validation,
            "metrics": {
                "accuracy": validation.get("accuracy", 0.0),
                "loss": validation.get("loss", 0.0)
            }
        }

    async def _reinforcement_learning(self,
                                    event: LearningEvent,
                                    state: LearningState,
                                    context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement reinforcement learning."""
        # Extract state and action
        current_state = await self._extract_state(event.data, context)
        action = event.data.get("action")
        reward = event.outcome if event.outcome is not None else 0.0
        
        # Update policy
        policy_update = await self._update_policy(
            current_state, action, reward, state, context)
        
        # Optimize value function
        value_update = await self._update_value_function(
            current_state, reward, state, context)
        
        return {
            "success": True,
            "mode": LearningMode.REINFORCEMENT.value,
            "policy_update": policy_update,
            "value_update": value_update,
            "metrics": {
                "reward": reward,
                "value_error": value_update.get("error", 0.0)
            }
        }

    async def _active_learning(self,
                             event: LearningEvent,
                             state: LearningState,
                             context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement active learning."""
        # Query selection
        query = await self._select_query(event.data, state, context)
        
        # Get feedback
        feedback = await self._get_feedback(query, context)
        
        # Update model
        model_update = await self._update_model_active(
            query, feedback, state, context)
        
        return {
            "success": True,
            "mode": LearningMode.ACTIVE.value,
            "query": query,
            "feedback": feedback,
            "model_update": model_update,
            "metrics": {
                "uncertainty": query.get("uncertainty", 0.0),
                "feedback_quality": feedback.get("quality", 0.0)
            }
        }

    async def _transfer_learning(self,
                               event: LearningEvent,
                               state: LearningState,
                               context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement transfer learning."""
        # Source task selection
        source_task = await self._select_source_task(event.data, state, context)
        
        # Knowledge extraction
        knowledge = await self._extract_knowledge(source_task, context)
        
        # Transfer adaptation
        adaptation = await self._adapt_knowledge(
            knowledge, event.data, state, context)
        
        # Apply transfer
        transfer = await self._apply_transfer(adaptation, state, context)
        
        return {
            "success": True,
            "mode": LearningMode.TRANSFER.value,
            "source_task": source_task,
            "knowledge": knowledge,
            "adaptation": adaptation,
            "transfer": transfer,
            "metrics": {
                "transfer_efficiency": transfer.get("efficiency", 0.0),
                "adaptation_quality": adaptation.get("quality", 0.0)
            }
        }

    async def _meta_learning(self,
                           event: LearningEvent,
                           state: LearningState,
                           context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement meta-learning."""
        # Task characterization
        task_char = await self._characterize_task(event.data, context)
        
        # Strategy selection
        strategy = await self._select_strategy(task_char, state, context)
        
        # Parameter optimization
        optimization = await self._optimize_parameters(
            strategy, task_char, state, context)
        
        # Apply meta-learning
        meta_update = await self._apply_meta_learning(
            optimization, state, context)
        
        return {
            "success": True,
            "mode": LearningMode.META.value,
            "task_characterization": task_char,
            "strategy": strategy,
            "optimization": optimization,
            "meta_update": meta_update,
            "metrics": {
                "strategy_fit": strategy.get("fit_score", 0.0),
                "optimization_improvement": optimization.get("improvement", 0.0)
            }
        }

    async def _ensemble_learning(self,
                               event: LearningEvent,
                               state: LearningState,
                               context: Dict[str, Any]) -> Dict[str, Any]:
        """Implement ensemble learning."""
        # Member selection
        members = await self._select_members(event.data, state, context)
        
        # Weight optimization
        weights = await self._optimize_weights(members, state, context)
        
        # Combine predictions
        combination = await self._combine_predictions(
            members, weights, event.data, context)
        
        return {
            "success": True,
            "mode": LearningMode.ENSEMBLE.value,
            "members": members,
            "weights": weights,
            "combination": combination,
            "metrics": {
                "ensemble_diversity": weights.get("diversity", 0.0),
                "combination_strength": combination.get("strength", 0.0)
            }
        }

    def _get_learning_state(self, strategy_type: str) -> LearningState:
        """Get or initialize learning state for strategy."""
        if strategy_type not in self.states:
            self.states[strategy_type] = LearningState(
                mode=LearningMode.SUPERVISED,
                parameters={
                    "learning_rate": self.learning_rate,
                    "exploration_rate": self.exploration_rate
                },
                history=[],
                metrics={}
            )
        return self.states[strategy_type]

    def _update_learning_state(self, state: LearningState, result: Dict[str, Any]):
        """Update learning state with result."""
        # Update history
        state.history.append(LearningEvent(
            strategy_type=result.get("strategy_type", "unknown"),
            event_type="learning_update",
            data=result,
            outcome=result.get("metrics", {}).get("accuracy", 0.0),
            timestamp=datetime.now()
        ))
        
        # Update metrics
        for metric, value in result.get("metrics", {}).items():
            if metric in state.metrics:
                state.metrics[metric] = (
                    0.9 * state.metrics[metric] + 0.1 * value  # Exponential moving average
                )
            else:
                state.metrics[metric] = value
        
        # Adapt parameters
        self._adapt_parameters(state, result)

    def _record_performance(self, strategy_type: str, result: Dict[str, Any]):
        """Record learning performance."""
        self.performance_history.append({
            "timestamp": datetime.now().isoformat(),
            "strategy_type": strategy_type,
            "mode": result.get("mode"),
            "metrics": result.get("metrics", {}),
            "success": result.get("success", False)
        })
        
        # Update strategy metrics
        for metric, value in result.get("metrics", {}).items():
            self.strategy_metrics[f"{strategy_type}_{metric}"].append(value)
        
        # Maintain memory size
        if len(self.performance_history) > self.memory_size:
            self.performance_history = self.performance_history[-self.memory_size:]

    def _adapt_parameters(self, state: LearningState, result: Dict[str, Any]):
        """Adapt learning parameters based on performance."""
        # Adapt learning rate
        if "accuracy" in result.get("metrics", {}):
            accuracy = result["metrics"]["accuracy"]
            if accuracy > 0.8:
                state.parameters["learning_rate"] *= 0.95  # Decrease if performing well
            elif accuracy < 0.6:
                state.parameters["learning_rate"] *= 1.05  # Increase if performing poorly
        
        # Adapt exploration rate
        if "reward" in result.get("metrics", {}):
            reward = result["metrics"]["reward"]
            if reward > 0:
                state.parameters["exploration_rate"] *= 0.95  # Decrease if getting rewards
            else:
                state.parameters["exploration_rate"] *= 1.05  # Increase if not getting rewards
        
        # Clip parameters to reasonable ranges
        state.parameters["learning_rate"] = np.clip(
            state.parameters["learning_rate"], 0.001, 0.5)
        state.parameters["exploration_rate"] = np.clip(
            state.parameters["exploration_rate"], 0.01, 0.5)

    def get_performance_metrics(self) -> Dict[str, Any]:
        """Get comprehensive performance metrics."""
        return {
            "learning_states": {
                strategy_type: {
                    "mode": state.mode.value,
                    "parameters": state.parameters,
                    "metrics": state.metrics
                }
                for strategy_type, state in self.states.items()
            },
            "strategy_performance": {
                metric: {
                    "mean": np.mean(values) if values else 0.0,
                    "std": np.std(values) if values else 0.0,
                    "min": min(values) if values else 0.0,
                    "max": max(values) if values else 0.0
                }
                for metric, values in self.strategy_metrics.items()
            },
            "transfer_metrics": {
                "total_transfers": len(self.transfer_history),
                "success_rate": sum(1 for t in self.transfer_history if t.get("success", False)) / len(self.transfer_history) if self.transfer_history else 0
            }
        }

    def clear_history(self):
        """Clear learning history and reset states."""
        self.states.clear()
        self.performance_history.clear()
        self.strategy_metrics.clear()
        self.transfer_history.clear()