Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,62 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
)
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def analyze(text):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Force "positive" for bullish terms
|
19 |
-
bullish_keywords = ["etf approved", "bullish", "halving", "burn", "greenlighted"]
|
20 |
-
if any(keyword in text_lower for keyword in bullish_keywords):
|
21 |
-
return {"label": "positive", "score": 0.99}
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Configure Gradio interface for API compatibility
|
32 |
gr.Interface(
|
33 |
fn=analyze,
|
34 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
35 |
-
outputs=gr.JSON(),
|
36 |
title="Crypto-Specific Sentiment Analysis",
|
37 |
description="Analyzes sentiment of crypto news headlines. Overrides neutral predictions for key terms like 'ETF approved' or 'SEC lawsuit'.",
|
38 |
-
|
39 |
).launch(
|
40 |
server_name="0.0.0.0",
|
41 |
-
server_port=7860
|
42 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
|
4 |
+
# Model name
|
5 |
+
model_name = "ElKulako/cryptobert"
|
6 |
+
|
7 |
+
# Load model and tokenizer explicitly to prevent errors
|
8 |
+
try:
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
# Load the pipeline
|
13 |
+
sentiment_pipeline = pipeline(
|
14 |
+
"text-classification",
|
15 |
+
model=model,
|
16 |
+
tokenizer=tokenizer
|
17 |
+
)
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Error loading model: {e}")
|
20 |
+
exit(1)
|
21 |
+
|
22 |
+
# Sentiment analysis function with keyword overrides
|
23 |
def analyze(text):
|
24 |
+
if not text or text.strip() == "":
|
25 |
+
return {"error": "No text provided."}
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Get the model's initial prediction
|
29 |
+
result = sentiment_pipeline(text)[0]
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Override logic for crypto-specific keywords (case-insensitive)
|
32 |
+
text_lower = text.lower()
|
33 |
+
|
34 |
+
# Force "positive" for bullish terms
|
35 |
+
bullish_keywords = ["etf approved", "bullish", "halving", "burn", "greenlighted"]
|
36 |
+
if any(keyword in text_lower for keyword in bullish_keywords):
|
37 |
+
return {"label": "positive", "score": 0.99}
|
38 |
+
|
39 |
+
# Force "negative" for bearish terms
|
40 |
+
bearish_keywords = ["sec lawsuit", "hack", "fud", "sell-off", "delist"]
|
41 |
+
if any(keyword in text_lower for keyword in bearish_keywords):
|
42 |
+
return {"label": "negative", "score": 0.99}
|
43 |
+
|
44 |
+
# Return original prediction if no keywords matched
|
45 |
+
return {"label": result["label"], "score": result["score"]}
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
return {"error": str(e)}
|
49 |
|
50 |
# Configure Gradio interface for API compatibility
|
51 |
gr.Interface(
|
52 |
fn=analyze,
|
53 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
54 |
+
outputs=gr.JSON(),
|
55 |
title="Crypto-Specific Sentiment Analysis",
|
56 |
description="Analyzes sentiment of crypto news headlines. Overrides neutral predictions for key terms like 'ETF approved' or 'SEC lawsuit'.",
|
57 |
+
allow_flagging="never"
|
58 |
).launch(
|
59 |
server_name="0.0.0.0",
|
60 |
+
server_port=7860,
|
61 |
+
enable_queue=True # Ensures API requests are handled properly
|
62 |
+
)
|