Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load
|
5 |
sentiment_pipeline = pipeline(
|
6 |
"text-classification",
|
7 |
-
model="ElKulako/cryptobert", #
|
8 |
tokenizer="ElKulako/cryptobert"
|
9 |
)
|
10 |
|
11 |
def analyze(text):
|
|
|
12 |
result = sentiment_pipeline(text)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return {"label": result["label"], "score": result["score"]}
|
14 |
|
|
|
15 |
gr.Interface(
|
16 |
fn=analyze,
|
17 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
18 |
-
outputs=gr.JSON(),
|
19 |
title="Crypto-Specific Sentiment Analysis",
|
|
|
20 |
flagging_mode="never"
|
21 |
).launch(
|
22 |
server_name="0.0.0.0",
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load a crypto-specific sentiment model (e.g., ElKulako/cryptobert)
|
5 |
sentiment_pipeline = pipeline(
|
6 |
"text-classification",
|
7 |
+
model="ElKulako/cryptobert", # Pre-trained on crypto data
|
8 |
tokenizer="ElKulako/cryptobert"
|
9 |
)
|
10 |
|
11 |
def analyze(text):
|
12 |
+
# Get the model's initial prediction
|
13 |
result = sentiment_pipeline(text)[0]
|
14 |
+
|
15 |
+
# Override logic for crypto-specific keywords (case-insensitive)
|
16 |
+
text_lower = text.lower()
|
17 |
+
|
18 |
+
# Force "positive" for bullish terms
|
19 |
+
bullish_keywords = ["etf approved", "bullish", "halving", "burn", "greenlighted"]
|
20 |
+
if any(keyword in text_lower for keyword in bullish_keywords):
|
21 |
+
return {"label": "positive", "score": 0.99}
|
22 |
+
|
23 |
+
# Force "negative" for bearish terms
|
24 |
+
bearish_keywords = ["sec lawsuit", "hack", "fud", "sell-off", "delist"]
|
25 |
+
if any(keyword in text_lower for keyword in bearish_keywords):
|
26 |
+
return {"label": "negative", "score": 0.99}
|
27 |
+
|
28 |
+
# Return original prediction if no keywords matched
|
29 |
return {"label": result["label"], "score": result["score"]}
|
30 |
|
31 |
+
# Configure Gradio interface for API compatibility
|
32 |
gr.Interface(
|
33 |
fn=analyze,
|
34 |
inputs=gr.Textbox(placeholder="Enter crypto news headline..."),
|
35 |
+
outputs=gr.JSON(), # JSON output for n8n integration
|
36 |
title="Crypto-Specific Sentiment Analysis",
|
37 |
+
description="Analyzes sentiment of crypto news headlines. Overrides neutral predictions for key terms like 'ETF approved' or 'SEC lawsuit'.",
|
38 |
flagging_mode="never"
|
39 |
).launch(
|
40 |
server_name="0.0.0.0",
|