Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
|
5 |
MODEL_NAME = "my2000cup/Gaia-Petro-LLM"
|
6 |
|
@@ -21,29 +22,35 @@ def build_prompt(history, system_message, user_message):
|
|
21 |
if assistant:
|
22 |
messages.append({"role": "assistant", "content": assistant})
|
23 |
messages.append({"role": "user", "content": user_message})
|
24 |
-
# 如果你有chat模板支持,推荐用apply_chat_template
|
25 |
if hasattr(tokenizer, "apply_chat_template"):
|
26 |
prompt = tokenizer.apply_chat_template(
|
27 |
messages, tokenize=False, add_generation_prompt=True
|
28 |
)
|
29 |
else:
|
30 |
-
# fallback: 简单拼接
|
31 |
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) + "\nassistant:"
|
32 |
return prompt
|
33 |
|
34 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
35 |
prompt = build_prompt(history, system_message, message)
|
36 |
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
37 |
-
|
|
|
|
|
|
|
38 |
**inputs,
|
|
|
39 |
max_new_tokens=max_tokens,
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
42 |
do_sample=True,
|
43 |
-
pad_token_id=tokenizer.eos_token_id
|
44 |
)
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import threading
|
5 |
|
6 |
MODEL_NAME = "my2000cup/Gaia-Petro-LLM"
|
7 |
|
|
|
22 |
if assistant:
|
23 |
messages.append({"role": "assistant", "content": assistant})
|
24 |
messages.append({"role": "user", "content": user_message})
|
|
|
25 |
if hasattr(tokenizer, "apply_chat_template"):
|
26 |
prompt = tokenizer.apply_chat_template(
|
27 |
messages, tokenize=False, add_generation_prompt=True
|
28 |
)
|
29 |
else:
|
|
|
30 |
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) + "\nassistant:"
|
31 |
return prompt
|
32 |
|
33 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
34 |
prompt = build_prompt(history, system_message, message)
|
35 |
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
36 |
+
|
37 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
38 |
+
# 在新线程中异步生成
|
39 |
+
generation_kwargs = dict(
|
40 |
**inputs,
|
41 |
+
streamer=streamer,
|
42 |
max_new_tokens=max_tokens,
|
43 |
temperature=temperature,
|
44 |
top_p=top_p,
|
45 |
do_sample=True,
|
46 |
+
pad_token_id=tokenizer.eos_token_id,
|
47 |
)
|
48 |
+
gen_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
49 |
+
gen_thread.start()
|
50 |
+
output = ""
|
51 |
+
for new_text in streamer:
|
52 |
+
output += new_text
|
53 |
+
yield output
|
54 |
|
55 |
demo = gr.ChatInterface(
|
56 |
respond,
|