Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,16 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
-
|
6 |
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
-
|
10 |
torch_dtype="auto",
|
11 |
device_map="auto"
|
12 |
)
|
13 |
|
14 |
def build_prompt(history, system_message, user_message):
|
15 |
-
# 可以根据你的模型模板调整
|
16 |
messages = []
|
17 |
if system_message:
|
18 |
messages.append({"role": "system", "content": system_message})
|
@@ -22,54 +21,29 @@ def build_prompt(history, system_message, user_message):
|
|
22 |
if assistant:
|
23 |
messages.append({"role": "assistant", "content": assistant})
|
24 |
messages.append({"role": "user", "content": user_message})
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
return prompt
|
32 |
|
33 |
-
def respond(
|
34 |
-
message,
|
35 |
-
history,
|
36 |
-
system_message,
|
37 |
-
max_tokens,
|
38 |
-
temperature,
|
39 |
-
top_p
|
40 |
-
):
|
41 |
prompt = build_prompt(history, system_message, message)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
streamer = None
|
46 |
-
try:
|
47 |
-
from transformers import TextIteratorStreamer
|
48 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
49 |
-
except ImportError:
|
50 |
-
streamer = None
|
51 |
-
|
52 |
-
gen_kwargs = dict(
|
53 |
-
**model_inputs,
|
54 |
max_new_tokens=max_tokens,
|
55 |
temperature=temperature,
|
56 |
top_p=top_p,
|
57 |
do_sample=True,
|
58 |
pad_token_id=tokenizer.eos_token_id
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
-
thread = torch.Thread(target=model.generate, kwargs=gen_kwargs)
|
63 |
-
thread.start()
|
64 |
-
response = ""
|
65 |
-
for new_text in streamer:
|
66 |
-
response += new_text
|
67 |
-
yield response
|
68 |
-
thread.join()
|
69 |
-
else:
|
70 |
-
output = model.generate(**gen_kwargs)
|
71 |
-
response = tokenizer.decode(output[0][model_inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
72 |
-
yield response
|
73 |
|
74 |
demo = gr.ChatInterface(
|
75 |
respond,
|
@@ -77,14 +51,10 @@ demo = gr.ChatInterface(
|
|
77 |
gr.Textbox(value="You are an oil & gas industry expert.", label="System message"),
|
78 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
79 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
80 |
-
gr.Slider(
|
81 |
-
minimum=0.1,
|
82 |
-
maximum=1.0,
|
83 |
-
value=0.95,
|
84 |
-
step=0.05,
|
85 |
-
label="Top-p (nucleus sampling)",
|
86 |
-
),
|
87 |
],
|
|
|
|
|
88 |
)
|
89 |
|
90 |
if __name__ == "__main__":
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
MODEL_NAME = "my2000cup/Gaia-Petro-LLM"
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
MODEL_NAME,
|
10 |
torch_dtype="auto",
|
11 |
device_map="auto"
|
12 |
)
|
13 |
|
14 |
def build_prompt(history, system_message, user_message):
|
|
|
15 |
messages = []
|
16 |
if system_message:
|
17 |
messages.append({"role": "system", "content": system_message})
|
|
|
21 |
if assistant:
|
22 |
messages.append({"role": "assistant", "content": assistant})
|
23 |
messages.append({"role": "user", "content": user_message})
|
24 |
+
# 如果你有chat模板支持,推荐用apply_chat_template
|
25 |
+
if hasattr(tokenizer, "apply_chat_template"):
|
26 |
+
prompt = tokenizer.apply_chat_template(
|
27 |
+
messages, tokenize=False, add_generation_prompt=True
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
# fallback: 简单拼接
|
31 |
+
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) + "\nassistant:"
|
32 |
return prompt
|
33 |
|
34 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
prompt = build_prompt(history, system_message, message)
|
36 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
37 |
+
output = model.generate(
|
38 |
+
**inputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
max_new_tokens=max_tokens,
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
42 |
do_sample=True,
|
43 |
pad_token_id=tokenizer.eos_token_id
|
44 |
)
|
45 |
+
response = tokenizer.decode(output[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
46 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
|
|
51 |
gr.Textbox(value="You are an oil & gas industry expert.", label="System message"),
|
52 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
],
|
56 |
+
title="Gaia-Petro-LLM Chatbot",
|
57 |
+
description="⚡ 基于Hugging Face Transformers的石油行业专家助手。"
|
58 |
)
|
59 |
|
60 |
if __name__ == "__main__":
|