multimodalart HF staff commited on
Commit
e335025
·
verified ·
1 Parent(s): d35ea9a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -87
README.md CHANGED
@@ -1,87 +1,14 @@
1
- ## The GAN is dead; long live the GAN! A Modern Baseline GAN (R3GAN)<br><sub>Official PyTorch implementation of the NeurIPS 2024 paper</sub>
2
-
3
- ![Teaser image](./doc/teaser.png)
4
-
5
- **The GAN is dead; long live the GAN! A Modern Baseline GAN**<br>
6
- Nick Huang, [Aaron Gokaslan](https://skylion007.github.io/), [Volodymyr Kuleshov](https://www.cs.cornell.edu/~kuleshov/), [James Tompkin](https://www.jamestompkin.com)
7
- <br>https://openreview.net/forum?id=OrtN9hPP7V
8
- <br>https://arxiv.org/abs/2501.05441
9
- <br>
10
-
11
- Abstract: *There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, this loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.*
12
-
13
- ## Requirements
14
-
15
- Our code requires the same packages as the official StyleGAN3 repo. However, we have updated the code so it is compatible with the latest version of the required packages (including PyTorch, etc).
16
-
17
- ## Getting started
18
- To generate images using a given model, run:
19
-
20
- ```
21
- # Generate 8 images using pre-trained FFHQ 256x256 model
22
- gen_images.py --seeds=0-7 --outdir=out --network=ffhq-256x256.pkl
23
-
24
- # Generate 64 airplane images using pre-trained CIFAR10 model
25
- gen_images.py --seeds=0-63 --outdir=out --class=0 --network=cifar10.pkl
26
- ```
27
-
28
- To reproduce the main results from our paper, run the following commands:
29
-
30
- ```
31
- # CIFAR10
32
- python train.py --outdir=./training-runs --data=./datasets/cifar10.zip --gpus=8 --batch=512 --mirror=1 --aug=1 --cond=1 --preset=CIFAR10 --tick=1 --snap=200
33
-
34
- # FFHQ 64x64
35
- python train.py --outdir=./training-runs --data=./datasets/ffhq-64x64.zip --gpus=8 --batch=256 --mirror=1 --aug=1 --preset=FFHQ-64 --tick=1 --snap=200
36
-
37
- # FFHQ 256x256
38
- python train.py --outdir=./training-runs --data=./datasets/ffhq-256x256.zip --gpus=8 --batch=256 --mirror=1 --aug=1 --preset=FFHQ-256 --tick=1 --snap=200
39
-
40
- # ImageNet 32x32
41
- python train.py --outdir=./training-runs --data=./datasets/imagenet-32x32.zip --gpus=32 --batch=4096 --mirror=1 --aug=1 --cond=1 --preset=ImageNet-32 --tick=1 --snap=200
42
-
43
- # Imagenet 64x64
44
- python train.py --outdir=./training-runs --data=./datasets/imagenet-64x64.zip --gpus=64 --batch=4096 --mirror=1 --aug=1 --cond=1 --preset=ImageNet-64 --tick=1 --snap=200
45
- ```
46
-
47
- The easiest way to explore different training settings is to modify [`train.py`](./train.py) directly.
48
-
49
- ## Pre-trained models
50
-
51
- We provide pre-trained models for our proposed training configuration (config E) on each dataset:
52
-
53
- - [https://huggingface.co/brownvc/BaselineGAN-CIFAR10/tree/main](https://huggingface.co/brownvc/BaselineGAN-CIFAR10/tree/main)
54
- - [https://huggingface.co/brownvc/BaselineGAN-FFHQ-64x64/tree/main](https://huggingface.co/brownvc/BaselineGAN-FFHQ-64x64/tree/main)
55
- - [https://huggingface.co/brownvc/BaselineGAN-FFHQ-256x256/tree/main](https://huggingface.co/brownvc/BaselineGAN-FFHQ-256x256/tree/main)
56
- - [https://huggingface.co/brownvc/BaselineGAN-ImgNet-64x64-v0/tree/main](https://huggingface.co/brownvc/BaselineGAN-ImgNet-64x64-v0/tree/main)
57
- - [https://huggingface.co/brownvc/BaselineGAN-ImgNet-32x32/tree/main](https://huggingface.co/brownvc/BaselineGAN-ImgNet-32x32/tree/main)
58
-
59
- ## Preparing datasets
60
- We use the same dataset format and dataset preprocessing tool as StyleGAN3 and EDM, refer to their repos for more details.
61
-
62
- ## Quality metrics
63
- We support the following metrics:
64
-
65
- * `fid50k_full`: Fr&eacute;chet inception distance against the full dataset.
66
- * `kid50k_full`: Kernel inception distance against the full dataset.
67
- * `pr50k3_full`: Precision and recall againt the full dataset.
68
- * `is50k`: Inception score for CIFAR-10.
69
-
70
- Refer to the StyleGAN3 code base for more details.
71
-
72
- ## Citation
73
-
74
- ```
75
- @inproceedings{
76
- huang2024the,
77
- title={The {GAN} is dead; long live the {GAN}! A Modern {GAN} Baseline},
78
- author={Nick Huang and Aaron Gokaslan and Volodymyr Kuleshov and James Tompkin},
79
- booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
80
- year={2024},
81
- url={https://openreview.net/forum?id=OrtN9hPP7V}
82
- }
83
- ```
84
-
85
- ## Acknowledgements
86
-
87
- The authors thank Xinjie Jayden Yi for contributing to the proof and Yu Cheng for helpful discussion. For compute, the authors thank Databricks Mosaic Research. Nick Huang was supported by a Brown University Division of Research Seed Award, and James Tompkin was supported by NSF CAREER 2144956. Volodymyr Kuleshov was supported by NSF CAREER 2145577 and NIH MIRA 1R35GM15124301.
 
1
+ ---
2
+ title: R3GAN - GANs are so back!
3
+ emoji: 📉
4
+ colorFrom: gray
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 5.11.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ short_description: GANs are so back!
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference