mramazan commited on
Commit
426ffb5
·
verified ·
1 Parent(s): d9ab129

Upload 60 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. LICENSE +674 -0
  3. README.md +32 -14
  4. config.py +4 -0
  5. favorites-selection.jpg +3 -0
  6. main.py +845 -0
  7. models/__init__.py +14 -0
  8. models/__pycache__/__init__.cpython-312.pyc +0 -0
  9. models/__pycache__/base.cpython-312.pyc +0 -0
  10. models/__pycache__/bert.cpython-312.pyc +0 -0
  11. models/__pycache__/dae.cpython-312.pyc +0 -0
  12. models/__pycache__/vae.cpython-312.pyc +0 -0
  13. models/base.py +15 -0
  14. models/bert.py +19 -0
  15. models/bert_modules/__init__.py +1 -0
  16. models/bert_modules/__pycache__/__init__.cpython-312.pyc +0 -0
  17. models/bert_modules/__pycache__/bert.cpython-312.pyc +0 -0
  18. models/bert_modules/__pycache__/transformer.cpython-312.pyc +0 -0
  19. models/bert_modules/attention/__init__.py +2 -0
  20. models/bert_modules/attention/__pycache__/__init__.cpython-312.pyc +0 -0
  21. models/bert_modules/attention/__pycache__/multi_head.cpython-312.pyc +0 -0
  22. models/bert_modules/attention/__pycache__/single.cpython-312.pyc +0 -0
  23. models/bert_modules/attention/multi_head.py +37 -0
  24. models/bert_modules/attention/single.py +25 -0
  25. models/bert_modules/bert.py +44 -0
  26. models/bert_modules/embedding/__init__.py +1 -0
  27. models/bert_modules/embedding/__pycache__/__init__.cpython-312.pyc +0 -0
  28. models/bert_modules/embedding/__pycache__/bert.cpython-312.pyc +0 -0
  29. models/bert_modules/embedding/__pycache__/position.cpython-312.pyc +0 -0
  30. models/bert_modules/embedding/__pycache__/token.cpython-312.pyc +0 -0
  31. models/bert_modules/embedding/bert.py +31 -0
  32. models/bert_modules/embedding/position.py +16 -0
  33. models/bert_modules/embedding/segment.py +6 -0
  34. models/bert_modules/embedding/token.py +6 -0
  35. models/bert_modules/transformer.py +31 -0
  36. models/bert_modules/utils/__init__.py +4 -0
  37. models/bert_modules/utils/__pycache__/__init__.cpython-312.pyc +0 -0
  38. models/bert_modules/utils/__pycache__/feed_forward.cpython-312.pyc +0 -0
  39. models/bert_modules/utils/__pycache__/gelu.cpython-312.pyc +0 -0
  40. models/bert_modules/utils/__pycache__/layer_norm.cpython-312.pyc +0 -0
  41. models/bert_modules/utils/__pycache__/sublayer.cpython-312.pyc +0 -0
  42. models/bert_modules/utils/feed_forward.py +16 -0
  43. models/bert_modules/utils/gelu.py +12 -0
  44. models/bert_modules/utils/layer_norm.py +17 -0
  45. models/bert_modules/utils/sublayer.py +18 -0
  46. models/dae.py +54 -0
  47. models/vae.py +69 -0
  48. options.py +125 -0
  49. recommendations.jpg +3 -0
  50. render.yaml +8 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ favorites-selection.jpg filter=lfs diff=lfs merge=lfs -text
37
+ recommendations.jpg filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,14 +1,32 @@
1
- ---
2
- title: AnimeRecBERT
3
- emoji: 🐨
4
- colorFrom: red
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 5.44.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- short_description: demo space for animerecbert
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Web Demo 🌐
2
+ www.animerecbert.online
3
+
4
+ ## Main Code
5
+ https://github.com/MRamazan/AnimeRecBERT
6
+
7
+ ## For Linux, Macos
8
+ If you want to run locally, **main.py script automatically downloads 7 files from my google drive. pretrained model, dataset mappings, anime information files etc.**
9
+ ```bash
10
+ git clone https://github.com/MRamazan/AnimeRecBertWeb
11
+ cd AnimeRecBertWeb
12
+ python3 -m venv venv
13
+ source venv/bin/activate
14
+ pip install -r requirements.txt
15
+ python main.py
16
+ ```
17
+
18
+ ## For Windows
19
+ If you want to run locally, **main.py script automatically downloads 7 files from my google drive. pretrained model, dataset mappings, anime information files etc.**
20
+ ```bash
21
+ git clone https://github.com/MRamazan/AnimeRecBertWeb
22
+ cd AnimeRecBertWeb
23
+ python -m venv venv
24
+ venv\Scripts\activate
25
+ pip install -r requirements.txt
26
+ python main.py
27
+ ```
28
+
29
+ ## Preview
30
+ <img src="favorites-selection.jpg" alt="Recommendations" width="700">
31
+ <img src="recommendations.jpg" alt="Favorite Selection" width="700">
32
+
config.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ RAW_DATASET_ROOT_FOLDER = 'Data'
2
+
3
+ STATE_DICT_KEY = 'model_state_dict'
4
+ OPTIMIZER_STATE_DICT_KEY = 'optimizer_state_dict'
favorites-selection.jpg ADDED

Git LFS Details

  • SHA256: 8bffe30762a1ac18edaabc19d89ec987a6e9ad3a83461061c27608eda46e5060
  • Pointer size: 131 Bytes
  • Size of remote file: 306 kB
main.py ADDED
@@ -0,0 +1,845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, jsonify, session, Response
2
+ import sys
3
+ import pickle
4
+ import json
5
+ import gc
6
+ import weakref
7
+ from pathlib import Path
8
+ from utils import *
9
+ from options import args
10
+ from models import model_factory
11
+ from flask_socketio import SocketIO, emit
12
+ from datetime import datetime
13
+ import random
14
+ import re
15
+ import xml.etree.ElementTree as ET
16
+
17
+ app = Flask(__name__)
18
+ app.secret_key = '1903bjk'
19
+ socketio = SocketIO(app, cors_allowed_origins="*")
20
+
21
+ # Memory-efficient chat system
22
+ class ChatManager:
23
+ def __init__(self, max_messages=100): # Reduced from 300
24
+ self.messages = []
25
+ self.active_users = {}
26
+ self.max_messages = max_messages
27
+
28
+ def add_message(self, message):
29
+ self.messages.append(message)
30
+ if len(self.messages) > self.max_messages:
31
+ self.messages.pop(0)
32
+
33
+ def get_messages(self):
34
+ return self.messages
35
+
36
+ def add_user(self, sid, username):
37
+ self.active_users[sid] = {
38
+ 'username': username,
39
+ 'connected_at': datetime.now()
40
+ }
41
+
42
+ def remove_user(self, sid):
43
+ return self.active_users.pop(sid, None)
44
+
45
+ def get_user_count(self):
46
+ return len(self.active_users)
47
+
48
+ def get_username(self, sid):
49
+ user = self.active_users.get(sid)
50
+ return user['username'] if user else None
51
+
52
+ def update_username(self, sid, new_username):
53
+ if sid in self.active_users:
54
+ self.active_users[sid]['username'] = new_username
55
+
56
+ chat_manager = ChatManager()
57
+
58
+ def generate_username():
59
+ adjectives = ['Cool', 'Awesome', 'Swift', 'Bright', 'Happy', 'Smart', 'Kind', 'Brave', 'Calm', 'Epic', "Black"]
60
+ nouns = ['Otaku', 'Ninja', 'Samurai', 'Dragon', 'Phoenix', 'Tiger', 'Wolf', 'Eagle', 'Fox', 'Bear']
61
+ return f"{random.choice(adjectives)}{random.choice(nouns)}{random.randint(100, 999)}"
62
+
63
+ def clean_message(message):
64
+ # HTML tag'leri temizle
65
+ message = re.sub(r'<[^>]*>', '', message)
66
+ # Uzunluk kontrolü
67
+ if len(message) > 500:
68
+ message = message[:500]
69
+ return message.strip()
70
+
71
+ # Lazy loading için wrapper class
72
+ class LazyDict:
73
+ def __init__(self, file_path):
74
+ self.file_path = file_path
75
+ self._data = None
76
+ self._loaded = False
77
+
78
+ def _load_data(self):
79
+ if not self._loaded:
80
+ try:
81
+ with open(self.file_path, "r", encoding="utf-8") as file:
82
+ self._data = json.load(file)
83
+ self._loaded = True
84
+ except Exception as e:
85
+ print(f"Warning: Could not load {self.file_path}: {str(e)}")
86
+ self._data = {}
87
+ self._loaded = True
88
+
89
+ def get(self, key, default=None):
90
+ self._load_data()
91
+ return self._data.get(key, default)
92
+
93
+ def __contains__(self, key):
94
+ self._load_data()
95
+ return key in self._data
96
+
97
+ def items(self):
98
+ self._load_data()
99
+ return self._data.items()
100
+
101
+ def keys(self):
102
+ self._load_data()
103
+ return self._data.keys()
104
+
105
+ def __len__(self):
106
+ self._load_data()
107
+ return len(self._data)
108
+
109
+ # Sitemap route'ları
110
+ @app.route('/sitemap.xml')
111
+ def sitemap():
112
+ """Dinamik sitemap.xml oluşturur"""
113
+ try:
114
+ # XML root element
115
+ urlset = ET.Element('urlset')
116
+ urlset.set('xmlns', 'http://www.sitemaps.org/schemas/sitemap/0.9')
117
+ urlset.set('xmlns:image', 'http://www.google.com/schemas/sitemap-image/1.1')
118
+
119
+ # Base URL
120
+ base_url = request.url_root.rstrip('/')
121
+ current_date = datetime.now().strftime('%Y-%m-%d')
122
+
123
+ # Ana sayfa
124
+ url = ET.SubElement(urlset, 'url')
125
+ ET.SubElement(url, 'loc').text = f'{base_url}/'
126
+ ET.SubElement(url, 'lastmod').text = current_date
127
+ ET.SubElement(url, 'changefreq').text = 'daily'
128
+ ET.SubElement(url, 'priority').text = '1.0'
129
+
130
+ # Chat sayfası
131
+ url = ET.SubElement(urlset, 'url')
132
+ ET.SubElement(url, 'loc').text = f'{base_url}/chat'
133
+ ET.SubElement(url, 'lastmod').text = current_date
134
+ ET.SubElement(url, 'changefreq').text = 'hourly'
135
+ ET.SubElement(url, 'priority').text = '0.8'
136
+
137
+ # Anime sayfaları (sadece ilk 50 anime - SEO için)
138
+ if recommendation_system and recommendation_system.id_to_anime:
139
+ anime_count = 0
140
+ for anime_id, anime_data in recommendation_system.id_to_anime.items():
141
+ if anime_count >= 50: # Reduced from 100
142
+ break
143
+
144
+ try:
145
+ anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
146
+ safe_name = anime_name.replace(' ', '-').replace('/', '-').replace('?', '').replace('&', 'and')
147
+ safe_name = re.sub(r'[^\w\-]', '', safe_name)
148
+
149
+ url = ET.SubElement(urlset, 'url')
150
+ ET.SubElement(url, 'loc').text = f'{base_url}/anime/{anime_id}/{safe_name}'
151
+ ET.SubElement(url, 'lastmod').text = current_date
152
+ ET.SubElement(url, 'changefreq').text = 'weekly'
153
+ ET.SubElement(url, 'priority').text = '0.6'
154
+
155
+ # Sadece gerekli durumlarda resim URL'si ekle
156
+ if anime_count < 20: # Sadece ilk 20 anime için resim
157
+ image_url = recommendation_system.get_anime_image_url(int(anime_id))
158
+ if image_url:
159
+ image_elem = ET.SubElement(url, 'image:image')
160
+ ET.SubElement(image_elem, 'image:loc').text = image_url
161
+ ET.SubElement(image_elem, 'image:title').text = anime_name
162
+ ET.SubElement(image_elem, 'image:caption').text = f'Poster image for {anime_name}'
163
+
164
+ anime_count += 1
165
+ except Exception as e:
166
+ print(f"Error processing anime {anime_id}: {e}")
167
+ continue
168
+
169
+ # XML'i string'e çevir
170
+ xml_str = ET.tostring(urlset, encoding='unicode')
171
+ xml_declaration = '<?xml version="1.0" encoding="UTF-8"?>\n'
172
+ full_xml = xml_declaration + xml_str
173
+
174
+ return Response(full_xml, mimetype='application/xml')
175
+
176
+ except Exception as e:
177
+ print(f"Sitemap generation error: {e}")
178
+ return Response(
179
+ '<?xml version="1.0" encoding="UTF-8"?><urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"></urlset>',
180
+ mimetype='application/xml')
181
+
182
+ @app.route('/robots.txt')
183
+ def robots_txt():
184
+ """Robots.txt dosyası"""
185
+ robots_content = f"""User-agent: *
186
+ Allow: /
187
+ Allow: /chat
188
+
189
+ Sitemap: {request.url_root.rstrip('/')}/sitemap.xml
190
+ """
191
+ return Response(robots_content, mimetype='text/plain')
192
+
193
+ @app.route('/anime/<int:anime_id>/<path:anime_name>')
194
+ def anime_detail(anime_id, anime_name):
195
+ """Anime detay sayfası (SEO için)"""
196
+ if not recommendation_system or str(anime_id) not in recommendation_system.id_to_anime:
197
+ return render_template('error.html', error="Anime not found"), 404
198
+
199
+ anime_data = recommendation_system.id_to_anime.get(str(anime_id))
200
+ anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
201
+
202
+ # Anime bilgilerini lazy loading ile al
203
+ image_url = recommendation_system.get_anime_image_url(anime_id)
204
+ mal_url = recommendation_system.get_anime_mal_url(anime_id)
205
+ genres = recommendation_system.get_anime_genres(anime_id)
206
+ anime_type = recommendation_system._get_type(anime_id)
207
+
208
+ # Benzer animeler öner (sadece 5 tane)
209
+ similar_animes = []
210
+ try:
211
+ recommendations, _, _ = recommendation_system.get_recommendations([anime_id], num_recommendations=5)
212
+ similar_animes = recommendations
213
+ except:
214
+ pass
215
+
216
+ anime_info = {
217
+ 'id': anime_id,
218
+ 'name': anime_name,
219
+ 'image_url': image_url,
220
+ 'mal_url': mal_url,
221
+ 'genres': genres,
222
+ 'similar_animes': similar_animes,
223
+ 'type': anime_type
224
+ }
225
+
226
+ # JSON-LD structured data oluştur
227
+ structured_data = generate_anime_structured_data(anime_info)
228
+
229
+ return render_template('anime_detail.html', anime=anime_info, structured_data=json.dumps(structured_data))
230
+
231
+ def generate_anime_structured_data(anime_info):
232
+ """Anime için JSON-LD structured data oluşturur"""
233
+ structured_data = {
234
+ "@context": "https://schema.org",
235
+ "@type": anime_info["type"],
236
+ "name": anime_info['name'],
237
+ "url": f"{request.url_root.rstrip('/')}/anime/{anime_info['id']}/{anime_info['name'].replace(' ', '-')}"
238
+ }
239
+
240
+ if anime_info['genres']:
241
+ structured_data["genre"] = anime_info['genres']
242
+
243
+ if anime_info['image_url']:
244
+ structured_data["image"] = anime_info['image_url']
245
+
246
+ if anime_info['mal_url']:
247
+ structured_data["sameAs"] = anime_info['mal_url']
248
+
249
+ return structured_data
250
+
251
+ @app.route('/sitemap-index.xml')
252
+ def sitemap_index():
253
+ """Sitemap index dosyası"""
254
+ try:
255
+ sitemapindex = ET.Element('sitemapindex')
256
+ sitemapindex.set('xmlns', 'http://www.sitemaps.org/schemas/sitemap/0.9')
257
+
258
+ base_url = request.url_root.rstrip('/')
259
+ current_date = datetime.now().strftime('%Y-%m-%d')
260
+
261
+ # Ana sitemap
262
+ sitemap = ET.SubElement(sitemapindex, 'sitemap')
263
+ ET.SubElement(sitemap, 'loc').text = f'{base_url}/sitemap.xml'
264
+ ET.SubElement(sitemap, 'lastmod').text = current_date
265
+
266
+ xml_str = ET.tostring(sitemapindex, encoding='unicode')
267
+ xml_declaration = '<?xml version="1.0" encoding="UTF-8"?>\n'
268
+ full_xml = xml_declaration + xml_str
269
+
270
+ return Response(full_xml, mimetype='application/xml')
271
+
272
+ except Exception as e:
273
+ print(f"Sitemap index generation error: {e}")
274
+ return Response(
275
+ '<?xml version="1.0" encoding="UTF-8"?><sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"></sitemapindex>',
276
+ mimetype='application/xml')
277
+
278
+ @app.route('/chat')
279
+ def chat():
280
+ return render_template('chat.html')
281
+
282
+ # SocketIO event'leri
283
+ @socketio.on('connect')
284
+ def on_connect():
285
+ username = generate_username()
286
+ chat_manager.add_user(request.sid, username)
287
+
288
+ # Kullanıcıya mevcut mesajları gönder
289
+ emit('chat_history', chat_manager.get_messages())
290
+
291
+ # Kullanıcı katıldı mesajı
292
+ join_message = {
293
+ 'username': 'System',
294
+ 'message': f'{username} joined the chat',
295
+ 'timestamp': datetime.now().strftime('%H:%M'),
296
+ 'type': 'system'
297
+ }
298
+
299
+ chat_manager.add_message(join_message)
300
+ emit('new_message', join_message, broadcast=True)
301
+ emit('user_count', chat_manager.get_user_count(), broadcast=True)
302
+
303
+ @socketio.on('disconnect')
304
+ def on_disconnect():
305
+ user = chat_manager.remove_user(request.sid)
306
+ if user:
307
+ username = user['username']
308
+ leave_message = {
309
+ 'username': 'System',
310
+ 'message': f'{username} left the chat',
311
+ 'timestamp': datetime.now().strftime('%H:%M'),
312
+ 'type': 'system'
313
+ }
314
+
315
+ chat_manager.add_message(leave_message)
316
+ emit('new_message', leave_message, broadcast=True)
317
+ emit('user_count', chat_manager.get_user_count(), broadcast=True)
318
+
319
+ @socketio.on('send_message')
320
+ def handle_message(data):
321
+ username = chat_manager.get_username(request.sid)
322
+ if not username:
323
+ return
324
+
325
+ message = clean_message(data.get('message', ''))
326
+ if not message:
327
+ return
328
+
329
+ message_obj = {
330
+ 'username': username,
331
+ 'message': message,
332
+ 'timestamp': datetime.now().strftime('%H:%M'),
333
+ 'type': 'user'
334
+ }
335
+
336
+ chat_manager.add_message(message_obj)
337
+ emit('new_message', message_obj, broadcast=True)
338
+
339
+ @socketio.on('change_username')
340
+ def handle_username_change(data):
341
+ old_username = chat_manager.get_username(request.sid)
342
+ if not old_username:
343
+ return
344
+
345
+ new_username = clean_message(data.get('username', ''))
346
+ if not new_username or len(new_username) < 2:
347
+ return
348
+
349
+ chat_manager.update_username(request.sid, new_username)
350
+
351
+ change_message = {
352
+ 'username': 'System',
353
+ 'message': f'{old_username} changed name to {new_username}',
354
+ 'timestamp': datetime.now().strftime('%H:%M'),
355
+ 'type': 'system'
356
+ }
357
+
358
+ chat_manager.add_message(change_message)
359
+ emit('new_message', change_message, broadcast=True)
360
+ emit('username_changed', {'username': new_username})
361
+
362
+ class AnimeRecommendationSystem:
363
+ def __init__(self, checkpoint_path, dataset_path, animes_path, images_path, mal_urls_path, type_seq_path, genres_path):
364
+ self.model = None
365
+ self.dataset = None
366
+ self.checkpoint_path = checkpoint_path
367
+ self.dataset_path = dataset_path
368
+ self.animes_path = animes_path
369
+
370
+ # Lazy loading ile memory optimization
371
+ self.id_to_anime = LazyDict(animes_path)
372
+ self.id_to_url = LazyDict(images_path)
373
+ self.id_to_mal_url = LazyDict(mal_urls_path)
374
+ self.id_to_type_seq = LazyDict(type_seq_path)
375
+ self.id_to_genres = LazyDict(genres_path)
376
+
377
+ # Cache için weak reference kullan
378
+ self._cache = {}
379
+
380
+ self.load_model_and_data()
381
+
382
+ def load_model_and_data(self):
383
+ try:
384
+ print("Loading model and data...")
385
+ args.bert_max_len = 128
386
+
387
+ # Dataset'i yükle
388
+ dataset_path = Path(self.dataset_path)
389
+ with dataset_path.open('rb') as f:
390
+ self.dataset = pickle.load(f)
391
+
392
+ # Model'i yükle
393
+ self.model = model_factory(args)
394
+ self.load_checkpoint()
395
+
396
+ # Garbage collection
397
+ gc.collect()
398
+ print("Model loaded successfully!")
399
+
400
+ except Exception as e:
401
+ print(f"Error loading model: {str(e)}")
402
+ raise e
403
+
404
+ def load_checkpoint(self):
405
+ try:
406
+ with open(self.checkpoint_path, 'rb') as f:
407
+ checkpoint = torch.load(f, map_location='cpu', weights_only=False)
408
+ self.model.load_state_dict(checkpoint['model_state_dict'])
409
+ self.model.eval()
410
+
411
+ # Checkpoint'i bellekten temizle
412
+ del checkpoint
413
+ gc.collect()
414
+
415
+ except Exception as e:
416
+ raise Exception(f"Failed to load checkpoint from {self.checkpoint_path}: {str(e)}")
417
+
418
+ def get_anime_genres(self, anime_id):
419
+ genres = self.id_to_genres.get(str(anime_id), [])
420
+ return [genre.title() for genre in genres] if genres else []
421
+
422
+ def get_all_animes(self):
423
+ """Tüm anime listesini döndürür - cache kullanır"""
424
+ cache_key = 'all_animes'
425
+ if cache_key in self._cache:
426
+ return self._cache[cache_key]
427
+
428
+ animes = []
429
+ # Sadece gerekli durumlarda yükle
430
+ for k, v in list(self.id_to_anime.items())[:1000]: # İlk 1000 anime
431
+ anime_name = v[0] if isinstance(v, list) and len(v) > 0 else str(v)
432
+ animes.append((int(k), anime_name))
433
+
434
+ animes.sort(key=lambda x: x[1])
435
+ self._cache[cache_key] = animes
436
+ return animes
437
+
438
+ def get_anime_image_url(self, anime_id):
439
+ return self.id_to_url.get(str(anime_id), None)
440
+
441
+ def get_anime_mal_url(self, anime_id):
442
+ return self.id_to_mal_url.get(str(anime_id), None)
443
+
444
+ def get_filtered_anime_pool(self, filters):
445
+ """Filtrelere göre anime havuzunu önceden filtreler"""
446
+ if not filters:
447
+ return None
448
+
449
+ if filters.get('show_hentai') and len([k for k, v in filters.items() if v]) == 1:
450
+ hentai_animes = []
451
+ # Sadece gerekli verileri kontrol et
452
+ for anime_id_str in list(self.id_to_anime.keys())[:500]: # Limit
453
+ anime_id = int(anime_id_str)
454
+ if self._is_hentai(anime_id):
455
+ hentai_animes.append(anime_id)
456
+ return hentai_animes
457
+
458
+ return None
459
+
460
+ def _is_hentai(self, anime_id):
461
+ """Anime'nin hentai olup olmadığını kontrol eder"""
462
+ type_seq_info = self.id_to_type_seq.get(str(anime_id))
463
+ if not type_seq_info or len(type_seq_info) < 3:
464
+ return False
465
+ return type_seq_info[2]
466
+
467
+ def _get_type(self, anime_id):
468
+ """Anime tipini döndürür"""
469
+ type_seq_info = self.id_to_type_seq.get(str(anime_id))
470
+ if not type_seq_info or len(type_seq_info) < 2:
471
+ return "Unknown"
472
+ return type_seq_info[1]
473
+
474
+ def get_recommendations(self, favorite_anime_ids, num_recommendations=20, filters=None): # Reduced from 40
475
+ try:
476
+ if not favorite_anime_ids:
477
+ return [], [], "Please add some favorite animes first!"
478
+
479
+ smap = self.dataset
480
+ inverted_smap = {v: k for k, v in smap.items()}
481
+
482
+ converted_ids = []
483
+ for anime_id in favorite_anime_ids:
484
+ if anime_id in smap:
485
+ converted_ids.append(smap[anime_id])
486
+
487
+ if not converted_ids:
488
+ return [], [], "None of the selected animes are in the model vocabulary!"
489
+
490
+ # Hentai filtresi özel durumu
491
+ filtered_pool = self.get_filtered_anime_pool(filters)
492
+ if filtered_pool is not None:
493
+ return self._get_recommendations_from_pool(favorite_anime_ids, filtered_pool, num_recommendations, filters)
494
+
495
+ # Normal öneriler
496
+ target_len = 128
497
+ padded = converted_ids + [0] * (target_len - len(converted_ids))
498
+ input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)
499
+
500
+ max_predictions = min(75, len(inverted_smap)) # Reduced from 125
501
+
502
+ with torch.no_grad():
503
+ logits = self.model(input_tensor)
504
+ last_logits = logits[:, -1, :]
505
+ top_scores, top_indices = torch.topk(last_logits, k=max_predictions, dim=1)
506
+
507
+ recommendations = []
508
+ scores = []
509
+
510
+ for idx, score in zip(top_indices.numpy()[0], top_scores.detach().numpy()[0]):
511
+ if idx in inverted_smap:
512
+ anime_id = inverted_smap[idx]
513
+
514
+ if anime_id in favorite_anime_ids:
515
+ continue
516
+
517
+ if str(anime_id) in self.id_to_anime:
518
+ # Filtreleme kontrolü
519
+ if filters and not self._should_include_anime(anime_id, filters):
520
+ continue
521
+
522
+ anime_data = self.id_to_anime.get(str(anime_id))
523
+ anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
524
+
525
+ # Lazy loading ile image ve mal url al
526
+ image_url = self.get_anime_image_url(anime_id)
527
+ mal_url = self.get_anime_mal_url(anime_id)
528
+
529
+ recommendations.append({
530
+ 'id': anime_id,
531
+ 'name': anime_name,
532
+ 'score': float(score),
533
+ 'image_url': image_url,
534
+ 'mal_url': mal_url,
535
+ 'genres': self.get_anime_genres(anime_id)
536
+ })
537
+ scores.append(float(score))
538
+
539
+ if len(recommendations) >= num_recommendations:
540
+ break
541
+
542
+ # Memory cleanup
543
+ del logits, last_logits, top_scores, top_indices
544
+ gc.collect()
545
+
546
+ return recommendations, scores, f"Found {len(recommendations)} recommendations!"
547
+
548
+ except Exception as e:
549
+ return [], [], f"Error during prediction: {str(e)}"
550
+
551
+ def _get_recommendations_from_pool(self, favorite_anime_ids, anime_pool, num_recommendations, filters):
552
+ """Önceden filtrelenmiş anime havuzundan öneriler alır"""
553
+ try:
554
+ smap = self.dataset
555
+ converted_ids = []
556
+ for anime_id in favorite_anime_ids:
557
+ if anime_id in smap:
558
+ converted_ids.append(smap[anime_id])
559
+
560
+ if not converted_ids:
561
+ return [], [], "None of the selected animes are in the model vocabulary!"
562
+
563
+ target_len = 128
564
+ padded = converted_ids + [0] * (target_len - len(converted_ids))
565
+ input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)
566
+
567
+ with torch.no_grad():
568
+ logits = self.model(input_tensor)
569
+ last_logits = logits[:, -1, :]
570
+
571
+ # Anime havuzundaki her anime için skor hesapla
572
+ anime_scores = []
573
+ for anime_id in anime_pool:
574
+ if anime_id in favorite_anime_ids:
575
+ continue
576
+
577
+ if anime_id in smap:
578
+ model_id = smap[anime_id]
579
+ if model_id < last_logits.shape[1]:
580
+ score = last_logits[0, model_id].item()
581
+ anime_scores.append((anime_id, score))
582
+
583
+ # Skorlara göre sırala
584
+ anime_scores.sort(key=lambda x: x[1], reverse=True)
585
+
586
+ recommendations = []
587
+ for anime_id, score in anime_scores[:num_recommendations]:
588
+ if str(anime_id) in self.id_to_anime:
589
+ anime_data = self.id_to_anime.get(str(anime_id))
590
+ anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
591
+
592
+ recommendations.append({
593
+ 'id': anime_id,
594
+ 'name': anime_name,
595
+ 'score': float(score),
596
+ 'image_url': self.get_anime_image_url(anime_id),
597
+ 'mal_url': self.get_anime_mal_url(anime_id),
598
+ 'genres': self.get_anime_genres(anime_id)
599
+ })
600
+
601
+ # Memory cleanup
602
+ del logits, last_logits
603
+ gc.collect()
604
+
605
+ return recommendations, [r['score'] for r in recommendations], f"Found {len(recommendations)} filtered recommendations!"
606
+
607
+ except Exception as e:
608
+ return [], [], f"Error during filtered prediction: {str(e)}"
609
+
610
+ def _should_include_anime(self, anime_id, filters):
611
+ """Filtrelere göre anime'nin dahil edilip edilmeyeceğini kontrol eder"""
612
+ if 'blacklisted_animes' in filters:
613
+ if anime_id in filters['blacklisted_animes']:
614
+ return False
615
+
616
+ type_seq_info = self.id_to_type_seq.get(str(anime_id))
617
+ if not type_seq_info or len(type_seq_info) < 2:
618
+ return True
619
+
620
+ anime_type = type_seq_info[0]
621
+ is_sequel = type_seq_info[1]
622
+ is_hentai = type_seq_info[2]
623
+
624
+ # Sequel filtresi
625
+ if 'show_sequels' in filters:
626
+ if not filters['show_sequels'] and is_sequel:
627
+ return False
628
+
629
+ # Hentai filtresi
630
+ if 'show_hentai' in filters:
631
+ if filters['show_hentai']:
632
+ if not is_hentai:
633
+ return False
634
+ else:
635
+ if is_hentai:
636
+ return False
637
+
638
+ # Tür filtreleri
639
+ if 'show_movies' in filters:
640
+ if not filters['show_movies'] and anime_type == 'MOVIE':
641
+ return False
642
+
643
+ if 'show_tv' in filters:
644
+ if not filters['show_tv'] and anime_type == 'TV':
645
+ return False
646
+
647
+ if 'show_ova' in filters:
648
+ if not filters['show_ova'] and anime_type in ['ONA', 'OVA', 'SPECIAL']:
649
+ return False
650
+
651
+ return True
652
+
653
+ recommendation_system = None
654
+
655
+ @app.route('/')
656
+ def index():
657
+ if recommendation_system is None:
658
+ return render_template('error.html', error="Recommendation system not initialized. Please check server logs.")
659
+
660
+ animes = recommendation_system.get_all_animes()
661
+ return render_template('index.html', animes=animes)
662
+
663
+ @app.route('/api/search_animes')
664
+ def search_animes():
665
+ query = request.args.get('q', '').lower()
666
+ animes = []
667
+
668
+ # Sadece ilk 200 anime'yi arama - performance için
669
+ count = 0
670
+ for k, v in recommendation_system.id_to_anime.items():
671
+ if count >= 200:
672
+ break
673
+
674
+ anime_names = v if isinstance(v, list) else [v]
675
+ match_found = False
676
+
677
+ for name in anime_names:
678
+ if query in name.lower():
679
+ match_found = True
680
+ break
681
+
682
+ if not query or match_found:
683
+ main_name = anime_names[0] if anime_names else "Unknown"
684
+ animes.append((int(k), main_name))
685
+ count += 1
686
+
687
+ animes.sort(key=lambda x: x[1])
688
+ return jsonify(animes)
689
+
690
+ @app.route('/api/add_favorite', methods=['POST'])
691
+ def add_favorite():
692
+ if 'favorites' not in session:
693
+ session['favorites'] = []
694
+
695
+ data = request.get_json()
696
+ anime_id = int(data['anime_id'])
697
+
698
+ if anime_id not in session['favorites']:
699
+ # Maksimum 20 favori anime (memory için)
700
+ if len(session['favorites']) >= 20:
701
+ return jsonify({'success': False, 'message': 'Maximum 20 favorite animes allowed'})
702
+
703
+ session['favorites'].append(anime_id)
704
+ session.modified = True
705
+ return jsonify({'success': True})
706
+ else:
707
+ return jsonify({'success': False})
708
+
709
+ @app.route('/api/remove_favorite', methods=['POST'])
710
+ def remove_favorite():
711
+ if 'favorites' not in session:
712
+ session['favorites'] = []
713
+
714
+ data = request.get_json()
715
+ anime_id = int(data['anime_id'])
716
+
717
+ if anime_id in session['favorites']:
718
+ session['favorites'].remove(anime_id)
719
+ session.modified = True
720
+ return jsonify({'success': True})
721
+ else:
722
+ return jsonify({'success': False})
723
+
724
+ @app.route('/api/clear_favorites', methods=['POST'])
725
+ def clear_favorites():
726
+ session['favorites'] = []
727
+ session.modified = True
728
+ return jsonify({'success': True})
729
+
730
+ @app.route('/api/get_favorites')
731
+ def get_favorites():
732
+ if 'favorites' not in session:
733
+ session['favorites'] = []
734
+
735
+ favorite_animes = []
736
+ for anime_id in session['favorites']:
737
+ if str(anime_id) in recommendation_system.id_to_anime:
738
+ anime_data = recommendation_system.id_to_anime.get(str(anime_id))
739
+ anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
740
+ favorite_animes.append({'id': anime_id, 'name': anime_name})
741
+
742
+ return jsonify(favorite_animes)
743
+
744
+
745
+ @app.route('/api/get_recommendations', methods=['POST'])
746
+ def get_recommendations():
747
+ if 'favorites' not in session or not session['favorites']:
748
+ return jsonify({'success': False, 'message': 'Please add some favorite animes first!'})
749
+
750
+ data = request.get_json() or {}
751
+ filters = data.get('filters', {})
752
+
753
+ # Blacklist bilgisini ekle
754
+ blacklisted_animes = data.get('blacklisted_animes', [])
755
+ if blacklisted_animes:
756
+ filters['blacklisted_animes'] = blacklisted_animes
757
+
758
+ recommendations, scores, message = recommendation_system.get_recommendations(
759
+ session['favorites'],
760
+ filters=filters
761
+ )
762
+
763
+ if recommendations:
764
+ return jsonify({
765
+ 'success': True,
766
+ 'recommendations': recommendations,
767
+ 'message': message
768
+ })
769
+ else:
770
+ return jsonify({'success': False, 'message': message})
771
+
772
+
773
+ @app.route('/api/mal_logo')
774
+ def get_mal_logo():
775
+ # MyAnimeList logo URL'ini döndür
776
+ return jsonify({
777
+ 'success': True,
778
+ 'logo_url': 'https://cdn.myanimelist.net/img/sp/icon/apple-touch-icon-256.png'
779
+ })
780
+
781
+
782
+ def main():
783
+ global recommendation_system
784
+
785
+ args.num_items = 12689
786
+
787
+ import gdown
788
+ import os
789
+
790
+ file_ids = {
791
+ "1C6mdjblhiWGhRgbIk5DP2XCc4ElS9x8p": "pretrained_bert.pth",
792
+ "1U42cFrdLFT8NVNikT9C5SD9aAux7a5U2": "animes.json",
793
+ "1s-8FM1Wi2wOWJ9cstvm-O1_6XculTcTG": "dataset.pkl",
794
+ "1SOm1llcTKfhr-RTHC0dhaZ4AfWPs8wRx": "id_to_url.json",
795
+ "1vwJEMEOIYwvCKCCbbeaP0U_9L3NhvBzg": "anime_to_malurl.json",
796
+ "1_TyzON6ie2CqvzVNvPyc9prMTwLMefdu": "anime_to_typenseq.json",
797
+ "1G9O_ahyuJ5aO0cwoVnIXrlzMqjKrf2aw": "id_to_genres.json"
798
+ }
799
+
800
+ def download_from_gdrive(file_id, output_path):
801
+ url = f"https://drive.google.com/uc?id={file_id}"
802
+ try:
803
+ print(f"Downloading: {file_id}")
804
+ gdown.download(url, output_path, quiet=False)
805
+ print(f"Downloaded: {output_path}")
806
+ return True
807
+ except Exception as e:
808
+ print(f"Error: {e}")
809
+ return False
810
+
811
+ for key, value in file_ids.items():
812
+ if os.path.isfile(value):
813
+ continue
814
+ download_from_gdrive(key, value)
815
+
816
+ try:
817
+ images_path = "id_to_url.json"
818
+ mal_urls_path = "anime_to_malurl.json"
819
+ type_seq_path = "anime_to_typenseq.json"
820
+
821
+ if not os.path.exists(images_path):
822
+ print(f"Warning: {images_path} not found. Images will not be displayed.")
823
+
824
+ if not os.path.exists(mal_urls_path):
825
+ print(f"Warning: {mal_urls_path} not found. MAL links will not be available.")
826
+
827
+ recommendation_system = AnimeRecommendationSystem(
828
+ "pretrained_bert.pth",
829
+ "dataset.pkl",
830
+ "animes.json",
831
+ images_path,
832
+ mal_urls_path,
833
+ type_seq_path,
834
+ "id_to_genres.json"
835
+ )
836
+ print("Recommendation system initialized successfully!")
837
+ except Exception as e:
838
+ print(f"Failed to initialize recommendation system: {e}")
839
+ sys.exit(1)
840
+
841
+ app.run(debug=False, host='0.0.0.0', port=5000)
842
+
843
+
844
+ if __name__ == "__main__":
845
+ main()
models/__init__.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .bert import BERTModel
2
+ from .dae import DAEModel
3
+ from .vae import VAEModel
4
+
5
+ MODELS = {
6
+ BERTModel.code(): BERTModel,
7
+ DAEModel.code(): DAEModel,
8
+ VAEModel.code(): VAEModel
9
+ }
10
+
11
+
12
+ def model_factory(args):
13
+ model = MODELS[args.model_code]
14
+ return model(args)
models/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (656 Bytes). View file
 
models/__pycache__/base.cpython-312.pyc ADDED
Binary file (884 Bytes). View file
 
models/__pycache__/bert.cpython-312.pyc ADDED
Binary file (1.31 kB). View file
 
models/__pycache__/dae.cpython-312.pyc ADDED
Binary file (3.34 kB). View file
 
models/__pycache__/vae.cpython-312.pyc ADDED
Binary file (4.03 kB). View file
 
models/base.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ from abc import *
4
+
5
+
6
+ class BaseModel(nn.Module, metaclass=ABCMeta):
7
+ def __init__(self, args):
8
+ super().__init__()
9
+ self.args = args
10
+
11
+ @classmethod
12
+ @abstractmethod
13
+ def code(cls):
14
+ pass
15
+
models/bert.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base import BaseModel
2
+ from .bert_modules.bert import BERT
3
+
4
+ import torch.nn as nn
5
+
6
+
7
+ class BERTModel(BaseModel):
8
+ def __init__(self, args):
9
+ super().__init__(args)
10
+ self.bert = BERT(args)
11
+ self.out = nn.Linear(self.bert.hidden, args.num_items + 1)
12
+
13
+ @classmethod
14
+ def code(cls):
15
+ return 'bert'
16
+
17
+ def forward(self, x):
18
+ x = self.bert(x)
19
+ return self.out(x)
models/bert_modules/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
models/bert_modules/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (178 Bytes). View file
 
models/bert_modules/__pycache__/bert.cpython-312.pyc ADDED
Binary file (2.37 kB). View file
 
models/bert_modules/__pycache__/transformer.cpython-312.pyc ADDED
Binary file (2.26 kB). View file
 
models/bert_modules/attention/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .multi_head import MultiHeadedAttention
2
+ from .single import Attention
models/bert_modules/attention/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (287 Bytes). View file
 
models/bert_modules/attention/__pycache__/multi_head.cpython-312.pyc ADDED
Binary file (2.44 kB). View file
 
models/bert_modules/attention/__pycache__/single.cpython-312.pyc ADDED
Binary file (1.31 kB). View file
 
models/bert_modules/attention/multi_head.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .single import Attention
3
+
4
+
5
+ class MultiHeadedAttention(nn.Module):
6
+ """
7
+ Take in model size and number of heads.
8
+ """
9
+
10
+ def __init__(self, h, d_model, dropout=0.1):
11
+ super().__init__()
12
+ assert d_model % h == 0
13
+
14
+ # We assume d_v always equals d_k
15
+ self.d_k = d_model // h
16
+ self.h = h
17
+
18
+ self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)])
19
+ self.output_linear = nn.Linear(d_model, d_model)
20
+ self.attention = Attention()
21
+
22
+ self.dropout = nn.Dropout(p=dropout)
23
+
24
+ def forward(self, query, key, value, mask=None):
25
+ batch_size = query.size(0)
26
+
27
+ # 1) Do all the linear projections in batch from d_model => h x d_k
28
+ query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
29
+ for l, x in zip(self.linear_layers, (query, key, value))]
30
+
31
+ # 2) Apply attention on all the projected vectors in batch.
32
+ x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout)
33
+
34
+ # 3) "Concat" using a view and apply a final linear.
35
+ x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k)
36
+
37
+ return self.output_linear(x)
models/bert_modules/attention/single.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+ import torch
4
+
5
+ import math
6
+
7
+
8
+ class Attention(nn.Module):
9
+ """
10
+ Compute 'Scaled Dot Product Attention
11
+ """
12
+
13
+ def forward(self, query, key, value, mask=None, dropout=None):
14
+ scores = torch.matmul(query, key.transpose(-2, -1)) \
15
+ / math.sqrt(query.size(-1))
16
+
17
+ if mask is not None:
18
+ scores = scores.masked_fill(mask == 0, -1e9)
19
+
20
+ p_attn = F.softmax(scores, dim=-1)
21
+
22
+ if dropout is not None:
23
+ p_attn = dropout(p_attn)
24
+
25
+ return torch.matmul(p_attn, value), p_attn
models/bert_modules/bert.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+
3
+ from models.bert_modules.embedding import BERTEmbedding
4
+ from models.bert_modules.transformer import TransformerBlock
5
+ from utils import fix_random_seed_as
6
+
7
+
8
+ class BERT(nn.Module):
9
+ def __init__(self, args):
10
+ super().__init__()
11
+
12
+ fix_random_seed_as(args.model_init_seed)
13
+ # self.init_weights()
14
+
15
+ max_len = args.bert_max_len
16
+ num_items = args.num_items
17
+ n_layers = args.bert_num_blocks
18
+ heads = args.bert_num_heads
19
+ vocab_size = num_items + 2
20
+ hidden = args.bert_hidden_units
21
+ self.hidden = hidden
22
+ dropout = args.bert_dropout
23
+
24
+ # embedding for BERT, sum of positional, segment, token embeddings
25
+ self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=self.hidden, max_len=max_len, dropout=dropout)
26
+
27
+ # multi-layers transformer blocks, deep network
28
+ self.transformer_blocks = nn.ModuleList(
29
+ [TransformerBlock(hidden, heads, hidden * 4, dropout) for _ in range(n_layers)])
30
+
31
+ def forward(self, x):
32
+ mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1)
33
+
34
+ # embedding the indexed sequence to sequence of vectors
35
+ x = self.embedding(x)
36
+
37
+ # running over multiple transformer blocks
38
+ for transformer in self.transformer_blocks:
39
+ x = transformer.forward(x, mask)
40
+
41
+ return x
42
+
43
+ def init_weights(self):
44
+ pass
models/bert_modules/embedding/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .bert import BERTEmbedding
models/bert_modules/embedding/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (233 Bytes). View file
 
models/bert_modules/embedding/__pycache__/bert.cpython-312.pyc ADDED
Binary file (1.82 kB). View file
 
models/bert_modules/embedding/__pycache__/position.cpython-312.pyc ADDED
Binary file (1.19 kB). View file
 
models/bert_modules/embedding/__pycache__/token.cpython-312.pyc ADDED
Binary file (729 Bytes). View file
 
models/bert_modules/embedding/bert.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .token import TokenEmbedding
3
+ from .position import PositionalEmbedding
4
+
5
+
6
+ class BERTEmbedding(nn.Module):
7
+ """
8
+ BERT Embedding which is consisted with under features
9
+ 1. TokenEmbedding : normal embedding matrix
10
+ 2. PositionalEmbedding : adding positional information using sin, cos
11
+ 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2)
12
+
13
+ sum of all these features are output of BERTEmbedding
14
+ """
15
+
16
+ def __init__(self, vocab_size, embed_size, max_len, dropout=0.1):
17
+ """
18
+ :param vocab_size: total vocab size
19
+ :param embed_size: embedding size of token embedding
20
+ :param dropout: dropout rate
21
+ """
22
+ super().__init__()
23
+ self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size)
24
+ self.position = PositionalEmbedding(max_len=max_len, d_model=embed_size)
25
+ # self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim)
26
+ self.dropout = nn.Dropout(p=dropout)
27
+ self.embed_size = embed_size
28
+
29
+ def forward(self, sequence):
30
+ x = self.token(sequence) # + self.position(sequence) # + self.segment(segment_label)
31
+ return self.dropout(x)
models/bert_modules/embedding/position.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import math
4
+
5
+
6
+ class PositionalEmbedding(nn.Module):
7
+
8
+ def __init__(self, max_len, d_model):
9
+ super().__init__()
10
+
11
+ # Compute the positional encodings once in log space.
12
+ self.pe = nn.Embedding(max_len, d_model)
13
+
14
+ def forward(self, x):
15
+ batch_size = x.size(0)
16
+ return self.pe.weight.unsqueeze(0).repeat(batch_size, 1, 1)
models/bert_modules/embedding/segment.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ class SegmentEmbedding(nn.Embedding):
5
+ def __init__(self, embed_size=512):
6
+ super().__init__(3, embed_size, padding_idx=0)
models/bert_modules/embedding/token.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ class TokenEmbedding(nn.Embedding):
5
+ def __init__(self, vocab_size, embed_size=512):
6
+ super().__init__(vocab_size, embed_size, padding_idx=0)
models/bert_modules/transformer.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ from .attention import MultiHeadedAttention
4
+ from .utils import SublayerConnection, PositionwiseFeedForward
5
+
6
+
7
+ class TransformerBlock(nn.Module):
8
+ """
9
+ Bidirectional Encoder = Transformer (self-attention)
10
+ Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
11
+ """
12
+
13
+ def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
14
+ """
15
+ :param hidden: hidden size of transformer
16
+ :param attn_heads: head sizes of multi-head attention
17
+ :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
18
+ :param dropout: dropout rate
19
+ """
20
+
21
+ super().__init__()
22
+ self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden, dropout=dropout)
23
+ self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
24
+ self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
25
+ self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
26
+ self.dropout = nn.Dropout(p=dropout)
27
+
28
+ def forward(self, x, mask):
29
+ x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
30
+ x = self.output_sublayer(x, self.feed_forward)
31
+ return self.dropout(x)
models/bert_modules/utils/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .feed_forward import PositionwiseFeedForward
2
+ from .layer_norm import LayerNorm
3
+ from .sublayer import SublayerConnection
4
+ from .gelu import GELU
models/bert_modules/utils/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (378 Bytes). View file
 
models/bert_modules/utils/__pycache__/feed_forward.cpython-312.pyc ADDED
Binary file (1.43 kB). View file
 
models/bert_modules/utils/__pycache__/gelu.cpython-312.pyc ADDED
Binary file (1 kB). View file
 
models/bert_modules/utils/__pycache__/layer_norm.cpython-312.pyc ADDED
Binary file (1.49 kB). View file
 
models/bert_modules/utils/__pycache__/sublayer.cpython-312.pyc ADDED
Binary file (1.34 kB). View file
 
models/bert_modules/utils/feed_forward.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .gelu import GELU
3
+
4
+
5
+ class PositionwiseFeedForward(nn.Module):
6
+ "Implements FFN equation."
7
+
8
+ def __init__(self, d_model, d_ff, dropout=0.1):
9
+ super(PositionwiseFeedForward, self).__init__()
10
+ self.w_1 = nn.Linear(d_model, d_ff)
11
+ self.w_2 = nn.Linear(d_ff, d_model)
12
+ self.dropout = nn.Dropout(dropout)
13
+ self.activation = GELU()
14
+
15
+ def forward(self, x):
16
+ return self.w_2(self.dropout(self.activation(self.w_1(x))))
models/bert_modules/utils/gelu.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import math
4
+
5
+
6
+ class GELU(nn.Module):
7
+ """
8
+ Paper Section 3.4, last paragraph notice that BERT used the GELU instead of RELU
9
+ """
10
+
11
+ def forward(self, x):
12
+ return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
models/bert_modules/utils/layer_norm.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+
4
+
5
+ class LayerNorm(nn.Module):
6
+ "Construct a layernorm module (See citation for details)."
7
+
8
+ def __init__(self, features, eps=1e-6):
9
+ super(LayerNorm, self).__init__()
10
+ self.a_2 = nn.Parameter(torch.ones(features))
11
+ self.b_2 = nn.Parameter(torch.zeros(features))
12
+ self.eps = eps
13
+
14
+ def forward(self, x):
15
+ mean = x.mean(-1, keepdim=True)
16
+ std = x.std(-1, keepdim=True)
17
+ return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
models/bert_modules/utils/sublayer.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .layer_norm import LayerNorm
3
+
4
+
5
+ class SublayerConnection(nn.Module):
6
+ """
7
+ A residual connection followed by a layer norm.
8
+ Note for code simplicity the norm is first as opposed to last.
9
+ """
10
+
11
+ def __init__(self, size, dropout):
12
+ super(SublayerConnection, self).__init__()
13
+ self.norm = LayerNorm(size)
14
+ self.dropout = nn.Dropout(dropout)
15
+
16
+ def forward(self, x, sublayer):
17
+ "Apply residual connection to any sublayer with the same size."
18
+ return x + self.dropout(sublayer(self.norm(x)))
models/dae.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base import BaseModel
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+
8
+ class DAEModel(BaseModel):
9
+ def __init__(self, args):
10
+ super().__init__(args)
11
+
12
+ # Input dropout
13
+ self.input_dropout = nn.Dropout(p=args.dae_dropout)
14
+
15
+ # Construct a list of dimensions for the encoder and the decoder
16
+ dims = [args.dae_hidden_dim] * 2 * args.dae_num_hidden
17
+ dims = [args.num_items] + dims + [args.dae_latent_dim]
18
+
19
+ # Stack encoders and decoders
20
+ encoder_modules, decoder_modules = [], []
21
+ for i in range(len(dims)//2):
22
+ encoder_modules.append(nn.Linear(dims[2*i], dims[2*i+1]))
23
+ decoder_modules.append(nn.Linear(dims[-2*i-1], dims[-2*i-2]))
24
+ self.encoder = nn.ModuleList(encoder_modules)
25
+ self.decoder = nn.ModuleList(decoder_modules)
26
+
27
+ # Initialize weights
28
+ self.encoder.apply(self.weight_init)
29
+ self.decoder.apply(self.weight_init)
30
+
31
+ def weight_init(self, m):
32
+ if isinstance(m, nn.Linear):
33
+ nn.init.kaiming_normal_(m.weight)
34
+ m.bias.data.normal_(0.0, 0.001)
35
+
36
+ @classmethod
37
+ def code(cls):
38
+ return 'dae'
39
+
40
+ def forward(self, x):
41
+ x = F.normalize(x)
42
+ x = self.input_dropout(x)
43
+
44
+ for i, layer in enumerate(self.encoder):
45
+ x = layer(x)
46
+ x = torch.tanh(x)
47
+
48
+ for i, layer in enumerate(self.decoder):
49
+ x = layer(x)
50
+ if i != len(self.decoder)-1:
51
+ x = torch.tanh(x)
52
+
53
+ return x
54
+
models/vae.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base import BaseModel
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+
8
+ class VAEModel(BaseModel):
9
+ def __init__(self, args):
10
+ super().__init__(args)
11
+ self.latent_dim = args.vae_latent_dim
12
+
13
+ # Input dropout
14
+ self.input_dropout = nn.Dropout(p=args.vae_dropout)
15
+
16
+ # Construct a list of dimensions for the encoder and the decoder
17
+ dims = [args.vae_hidden_dim] * 2 * args.vae_num_hidden
18
+ dims = [args.num_items] + dims + [args.vae_latent_dim * 2]
19
+
20
+ # Stack encoders and decoders
21
+ encoder_modules, decoder_modules = [], []
22
+ for i in range(len(dims)//2):
23
+ encoder_modules.append(nn.Linear(dims[2*i], dims[2*i+1]))
24
+ if i == 0:
25
+ decoder_modules.append(nn.Linear(dims[-1]//2, dims[-2]))
26
+ else:
27
+ decoder_modules.append(nn.Linear(dims[-2*i-1], dims[-2*i-2]))
28
+ self.encoder = nn.ModuleList(encoder_modules)
29
+ self.decoder = nn.ModuleList(decoder_modules)
30
+
31
+ # Initialize weights
32
+ self.encoder.apply(self.weight_init)
33
+ self.decoder.apply(self.weight_init)
34
+
35
+ def weight_init(self, m):
36
+ if isinstance(m, nn.Linear):
37
+ nn.init.kaiming_normal_(m.weight)
38
+ m.bias.data.zero_()
39
+
40
+ @classmethod
41
+ def code(cls):
42
+ return 'vae'
43
+
44
+ def forward(self, x):
45
+ x = F.normalize(x)
46
+ x = self.input_dropout(x)
47
+
48
+ for i, layer in enumerate(self.encoder):
49
+ x = layer(x)
50
+ if i != len(self.encoder) - 1:
51
+ x = torch.tanh(x)
52
+
53
+ mu, logvar = x[:, :self.latent_dim], x[:, self.latent_dim:]
54
+
55
+ if self.training:
56
+ # since log(var) = log(sigma^2) = 2*log(sigma)
57
+ sigma = torch.exp(0.5 * logvar)
58
+ eps = torch.randn_like(sigma)
59
+ x = mu + eps * sigma
60
+ else:
61
+ x = mu
62
+
63
+ for i, layer in enumerate(self.decoder):
64
+ x = layer(x)
65
+ if i != len(self.decoder) - 1:
66
+ x = torch.tanh(x)
67
+
68
+ return x, mu, logvar
69
+
options.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from template_args import set_template
2
+ from models import MODELS
3
+ import argparse
4
+
5
+
6
+ parser = argparse.ArgumentParser(description='RecPlay')
7
+
8
+ ################
9
+ # Top Level
10
+ ################
11
+ parser.add_argument('--mode', type=str, default='train', choices=['train'])
12
+ parser.add_argument('--template', type=str, default="train_bert")
13
+
14
+ ################
15
+ # Test
16
+ ################
17
+ parser.add_argument('--test_model_path', type=str, default=None)
18
+
19
+ ################
20
+ # Dataset
21
+ ################
22
+
23
+ parser.add_argument('--min_rating', type=int, default=4, help='Only keep ratings greater than equal to this value')
24
+ parser.add_argument('--min_uc', type=int, default=5, help='Only keep users with more than min_uc ratings')
25
+ parser.add_argument('--min_sc', type=int, default=0, help='Only keep items with more than min_sc ratings')
26
+ parser.add_argument('--split', type=str, default='leave_one_out', help='How to split the datasets')
27
+ parser.add_argument('--dataset_split_seed', type=int, default=98765)
28
+ parser.add_argument('--eval_set_size', type=int, default=10000,
29
+ help='Size of val and test set. 500 for ML-1m and 10000 for ML-20m recommended')
30
+
31
+
32
+ #inference
33
+ parser.add_argument('--checkpoint', '-c', type=str,
34
+ help='Path to the model checkpoint (.pth file)')
35
+ parser.add_argument('--dataset', '-d', type=str,
36
+ help='Path to the dataset pickle file (.pkl)')
37
+ parser.add_argument('--animes', '-a', type=str,
38
+ help='Path to the animes JSON file')
39
+ parser.add_argument('--inference', '-i', type=str, default=False,
40
+ help='Path to the animes JSON file')
41
+ ################
42
+ # Dataloader
43
+ ################
44
+
45
+ parser.add_argument('--dataloader_random_seed', type=float, default=0.0)
46
+ parser.add_argument('--train_batch_size', type=int, default=64)
47
+ parser.add_argument('--val_batch_size', type=int, default=64)
48
+ parser.add_argument('--test_batch_size', type=int, default=64)
49
+
50
+ ################
51
+ # NegativeSampler
52
+ ################
53
+ parser.add_argument('--train_negative_sampler_code', type=str, default='random', choices=['popular', 'random'],
54
+ help='Method to sample negative items for training. Not used in bert')
55
+ parser.add_argument('--train_negative_sample_size', type=int, default=100)
56
+ parser.add_argument('--train_negative_sampling_seed', type=int, default=None)
57
+ parser.add_argument('--test_negative_sampler_code', type=str, default='random', choices=['popular', 'random'],
58
+ help='Method to sample negative items for evaluation')
59
+ parser.add_argument('--test_negative_sample_size', type=int, default=100)
60
+ parser.add_argument('--test_negative_sampling_seed', type=int, default=None)
61
+
62
+ ################
63
+ # Trainer
64
+ ################
65
+ # device #
66
+ parser.add_argument('--device', type=str, default='cpu', choices=['cpu', 'cuda'])
67
+ parser.add_argument('--num_gpu', type=int, default=1)
68
+ parser.add_argument('--device_idx', type=str, default='0')
69
+ # optimizer #
70
+ parser.add_argument('--optimizer', type=str, default='Adam', choices=['SGD', 'Adam'])
71
+ parser.add_argument('--lr', type=float, default=0.001, help='Learning rate')
72
+ parser.add_argument('--weight_decay', type=float, default=0, help='l2 regularization')
73
+ parser.add_argument('--momentum', type=float, default=None, help='SGD momentum')
74
+ # lr scheduler #
75
+ parser.add_argument('--decay_step', type=int, default=15, help='Decay step for StepLR')
76
+ parser.add_argument('--gamma', type=float, default=0.1, help='Gamma for StepLR')
77
+ # epochs #
78
+ parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs for training')
79
+ # logger #
80
+ parser.add_argument('--log_period_as_iter', type=int, default=12800)
81
+ # evaluation #
82
+ parser.add_argument('--metric_ks', nargs='+', type=int, default=[10, 20, 50], help='ks for Metric@k')
83
+ parser.add_argument('--best_metric', type=str, default='NDCG@10', help='Metric for determining the best model')
84
+ # Finding optimal beta for VAE #
85
+ parser.add_argument('--find_best_beta', type=bool, default=False,
86
+ help='If set True, the trainer will anneal beta all the way up to 1.0 and find the best beta')
87
+ parser.add_argument('--total_anneal_steps', type=int, default=2000, help='The step number when beta reaches 1.0')
88
+ parser.add_argument('--anneal_cap', type=float, default=0.2, help='Upper limit of increasing beta. Set this as the best beta found')
89
+
90
+ ################
91
+ # Model
92
+ ################
93
+ parser.add_argument('--model_code', type=str, default='bert', choices=MODELS.keys())
94
+ parser.add_argument('--model_init_seed', type=int, default=None)
95
+ # BERT #
96
+ parser.add_argument('--bert_max_len', type=int, default=None, help='Length of sequence for bert')
97
+ parser.add_argument('--bert_num_items', type=int, default=None, help='Number of total items')
98
+ parser.add_argument('--bert_hidden_units', type=int, default=None, help='Size of hidden vectors (d_model)')
99
+ parser.add_argument('--bert_num_blocks', type=int, default=None, help='Number of transformer layers')
100
+ parser.add_argument('--bert_num_heads', type=int, default=None, help='Number of heads for multi-attention')
101
+ parser.add_argument('--bert_dropout', type=float, default=None, help='Dropout probability to use throughout the model')
102
+ parser.add_argument('--bert_mask_prob', type=float, default=None, help='Probability for masking items in the training sequence')
103
+ # DAE #
104
+ parser.add_argument('--dae_num_items', type=int, default=None, help='Number of total items')
105
+ parser.add_argument('--dae_num_hidden', type=int, default=0, help='Number of hidden layers in DAE')
106
+ parser.add_argument('--dae_hidden_dim', type=int, default=600, help='Dimension of hidden layer in DAE')
107
+ parser.add_argument('--dae_latent_dim', type=int, default=200, help="Dimension of latent vector in DAE")
108
+ parser.add_argument('--dae_dropout', type=float, default=0.5, help='Probability of input dropout in DAE')
109
+ # VAE #
110
+ parser.add_argument('--vae_num_items', type=int, default=None, help='Number of total items')
111
+ parser.add_argument('--vae_num_hidden', type=int, default=0, help='Number of hidden layers in VAE')
112
+ parser.add_argument('--vae_hidden_dim', type=int, default=600, help='Dimension of hidden layer in VAE')
113
+ parser.add_argument('--vae_latent_dim', type=int, default=200, help="Dimension of latent vector in VAE (K in paper)")
114
+ parser.add_argument('--vae_dropout', type=float, default=0.5, help='Probability of input dropout in VAE')
115
+
116
+ ################
117
+ # Experiment
118
+ ################
119
+ parser.add_argument('--experiment_dir', type=str, default='experiments')
120
+ parser.add_argument('--experiment_description', type=str, default='test')
121
+
122
+
123
+ ################
124
+ args, unknown = parser.parse_known_args()
125
+ set_template(args)
recommendations.jpg ADDED

Git LFS Details

  • SHA256: 435feddf5b599e598678b7ba5520cfaf21023f5507b36c853f011f991d067527
  • Pointer size: 131 Bytes
  • Size of remote file: 401 kB
render.yaml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # render.yaml dosyası ekleyin
2
+ services:
3
+ - type: web
4
+ name: anime-recommendation
5
+ env: python
6
+ buildCommand: "pip install -r requirements.txt"
7
+ startCommand: "gunicorn -w 1 --bind 0.0.0.0:$PORT app:app"
8
+ plan: free