Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys
|
3 |
+
import pickle
|
4 |
+
import json
|
5 |
+
import gc
|
6 |
+
import torch
|
7 |
+
from pathlib import Path
|
8 |
+
import gdown
|
9 |
+
import os
|
10 |
+
import difflib
|
11 |
+
from datetime import datetime
|
12 |
+
import random
|
13 |
+
|
14 |
+
# Import your existing modules
|
15 |
+
from utils import *
|
16 |
+
from options import args
|
17 |
+
from models import model_factory
|
18 |
+
|
19 |
+
class LazyDict:
|
20 |
+
def __init__(self, file_path):
|
21 |
+
self.file_path = file_path
|
22 |
+
self._data = None
|
23 |
+
self._loaded = False
|
24 |
+
|
25 |
+
def _load_data(self):
|
26 |
+
if not self._loaded:
|
27 |
+
try:
|
28 |
+
with open(self.file_path, "r", encoding="utf-8") as file:
|
29 |
+
self._data = json.load(file)
|
30 |
+
self._loaded = True
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Warning: Could not load {self.file_path}: {str(e)}")
|
33 |
+
self._data = {}
|
34 |
+
self._loaded = True
|
35 |
+
|
36 |
+
def get(self, key, default=None):
|
37 |
+
self._load_data()
|
38 |
+
return self._data.get(key, default)
|
39 |
+
|
40 |
+
def __contains__(self, key):
|
41 |
+
self._load_data()
|
42 |
+
return key in self._data
|
43 |
+
|
44 |
+
def items(self):
|
45 |
+
self._load_data()
|
46 |
+
return self._data.items()
|
47 |
+
|
48 |
+
def keys(self):
|
49 |
+
self._load_data()
|
50 |
+
return self._data.keys()
|
51 |
+
|
52 |
+
def __len__(self):
|
53 |
+
self._load_data()
|
54 |
+
return len(self._data)
|
55 |
+
|
56 |
+
class AnimeRecommendationSystem:
|
57 |
+
def __init__(self, checkpoint_path, dataset_path, animes_path, images_path, mal_urls_path, type_seq_path, genres_path):
|
58 |
+
self.model = None
|
59 |
+
self.dataset = None
|
60 |
+
self.checkpoint_path = checkpoint_path
|
61 |
+
self.dataset_path = dataset_path
|
62 |
+
self.animes_path = animes_path
|
63 |
+
|
64 |
+
# Lazy loading ile memory optimization
|
65 |
+
self.id_to_anime = LazyDict(animes_path)
|
66 |
+
self.id_to_url = LazyDict(images_path)
|
67 |
+
self.id_to_mal_url = LazyDict(mal_urls_path)
|
68 |
+
self.id_to_type_seq = LazyDict(type_seq_path)
|
69 |
+
self.id_to_genres = LazyDict(genres_path)
|
70 |
+
|
71 |
+
# Cache için weak reference kullan
|
72 |
+
self._cache = {}
|
73 |
+
|
74 |
+
self.load_model_and_data()
|
75 |
+
|
76 |
+
def load_model_and_data(self):
|
77 |
+
try:
|
78 |
+
print("Loading model and data...")
|
79 |
+
args.bert_max_len = 128
|
80 |
+
|
81 |
+
# Dataset'i yükle
|
82 |
+
dataset_path = Path(self.dataset_path)
|
83 |
+
with dataset_path.open('rb') as f:
|
84 |
+
self.dataset = pickle.load(f)["smap"]
|
85 |
+
|
86 |
+
args.num_items = len(self.dataset)
|
87 |
+
|
88 |
+
# Model'i yükle
|
89 |
+
self.model = model_factory(args)
|
90 |
+
self.load_checkpoint()
|
91 |
+
|
92 |
+
# Garbage collection
|
93 |
+
gc.collect()
|
94 |
+
print("Model loaded successfully!")
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error loading model: {str(e)}")
|
98 |
+
raise e
|
99 |
+
|
100 |
+
def load_checkpoint(self):
|
101 |
+
try:
|
102 |
+
with open(self.checkpoint_path, 'rb') as f:
|
103 |
+
checkpoint = torch.load(f, map_location='cpu', weights_only=False)
|
104 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
105 |
+
self.model.eval()
|
106 |
+
|
107 |
+
# Checkpoint'i bellekten temizle
|
108 |
+
del checkpoint
|
109 |
+
gc.collect()
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
raise Exception(f"Failed to load checkpoint from {self.checkpoint_path}: {str(e)}")
|
113 |
+
|
114 |
+
def get_anime_genres(self, anime_id):
|
115 |
+
genres = self.id_to_genres.get(str(anime_id), [])
|
116 |
+
return [genre.title() for genre in genres] if genres else []
|
117 |
+
|
118 |
+
def get_anime_image_url(self, anime_id):
|
119 |
+
return self.id_to_url.get(str(anime_id), None)
|
120 |
+
|
121 |
+
def get_anime_mal_url(self, anime_id):
|
122 |
+
return self.id_to_mal_url.get(str(anime_id), None)
|
123 |
+
|
124 |
+
def _is_hentai(self, anime_id):
|
125 |
+
type_seq_info = self.id_to_type_seq.get(str(anime_id))
|
126 |
+
if not type_seq_info or len(type_seq_info) < 3:
|
127 |
+
return False
|
128 |
+
return type_seq_info[2]
|
129 |
+
|
130 |
+
def _get_type(self, anime_id):
|
131 |
+
type_seq_info = self.id_to_type_seq.get(str(anime_id))
|
132 |
+
if not type_seq_info or len(type_seq_info) < 2:
|
133 |
+
return "Unknown"
|
134 |
+
return type_seq_info[0]
|
135 |
+
|
136 |
+
def find_closest_anime(self, input_name):
|
137 |
+
"""Finds the closest matching anime to the input name"""
|
138 |
+
anime_names = {}
|
139 |
+
|
140 |
+
# Collect all titles (main + alternative)
|
141 |
+
for k, v in self.id_to_anime.items():
|
142 |
+
anime_id = int(k)
|
143 |
+
if isinstance(v, list) and len(v) > 0:
|
144 |
+
# Main title
|
145 |
+
main_title = v[0]
|
146 |
+
anime_names[main_title.lower().strip()] = (anime_id, main_title)
|
147 |
+
# Alternative titles
|
148 |
+
if len(v) > 1:
|
149 |
+
for alt_title in v[1:]:
|
150 |
+
if alt_title and isinstance(alt_title, str):
|
151 |
+
alt_title_clean = alt_title.strip()
|
152 |
+
if alt_title_clean:
|
153 |
+
anime_names[alt_title_clean.lower()] = (anime_id, main_title)
|
154 |
+
else:
|
155 |
+
title = str(v).strip()
|
156 |
+
anime_names[title.lower()] = (anime_id, title)
|
157 |
+
|
158 |
+
input_lower = input_name.lower().strip()
|
159 |
+
|
160 |
+
# 1. Exact match
|
161 |
+
if input_lower in anime_names:
|
162 |
+
return anime_names[input_lower]
|
163 |
+
|
164 |
+
# 2. Substring search
|
165 |
+
for anime_name_lower, (anime_id, main_title) in anime_names.items():
|
166 |
+
if input_lower in anime_name_lower:
|
167 |
+
return (anime_id, main_title)
|
168 |
+
|
169 |
+
# 3. Fuzzy matching
|
170 |
+
anime_name_list = list(anime_names.keys())
|
171 |
+
close_matches = difflib.get_close_matches(input_lower, anime_name_list, n=1, cutoff=0.6)
|
172 |
+
|
173 |
+
if close_matches:
|
174 |
+
match = close_matches[0]
|
175 |
+
return anime_names[match]
|
176 |
+
|
177 |
+
return None
|
178 |
+
|
179 |
+
def search_animes(self, query):
|
180 |
+
"""Search animes by query"""
|
181 |
+
animes = []
|
182 |
+
query_lower = query.lower() if query else ""
|
183 |
+
|
184 |
+
count = 0
|
185 |
+
for k, v in self.id_to_anime.items():
|
186 |
+
if count >= 200: # Limit for performance
|
187 |
+
break
|
188 |
+
|
189 |
+
anime_names = v if isinstance(v, list) else [v]
|
190 |
+
match_found = False
|
191 |
+
|
192 |
+
for name in anime_names:
|
193 |
+
if not query or query_lower in name.lower():
|
194 |
+
match_found = True
|
195 |
+
break
|
196 |
+
|
197 |
+
if match_found:
|
198 |
+
main_name = anime_names[0] if anime_names else "Unknown"
|
199 |
+
animes.append((int(k), main_name))
|
200 |
+
count += 1
|
201 |
+
|
202 |
+
animes.sort(key=lambda x: x[1])
|
203 |
+
return animes
|
204 |
+
|
205 |
+
def get_recommendations(self, favorite_anime_ids, num_recommendations=20, filters=None):
|
206 |
+
try:
|
207 |
+
if not favorite_anime_ids:
|
208 |
+
return [], [], "Please add some favorite animes first!"
|
209 |
+
|
210 |
+
smap = self.dataset
|
211 |
+
inverted_smap = {v: k for k, v in smap.items()}
|
212 |
+
|
213 |
+
converted_ids = []
|
214 |
+
for anime_id in favorite_anime_ids:
|
215 |
+
if anime_id in smap:
|
216 |
+
converted_ids.append(smap[anime_id])
|
217 |
+
|
218 |
+
if not converted_ids:
|
219 |
+
return [], [], "None of the selected animes are in the model vocabulary!"
|
220 |
+
|
221 |
+
# Normal recommendations
|
222 |
+
target_len = 128
|
223 |
+
padded = converted_ids + [0] * (target_len - len(converted_ids))
|
224 |
+
input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)
|
225 |
+
|
226 |
+
max_predictions = min(75, len(inverted_smap))
|
227 |
+
|
228 |
+
with torch.no_grad():
|
229 |
+
logits = self.model(input_tensor)
|
230 |
+
last_logits = logits[:, -1, :]
|
231 |
+
top_scores, top_indices = torch.topk(last_logits, k=max_predictions, dim=1)
|
232 |
+
|
233 |
+
recommendations = []
|
234 |
+
scores = []
|
235 |
+
|
236 |
+
for idx, score in zip(top_indices.numpy()[0], top_scores.detach().numpy()[0]):
|
237 |
+
if idx in inverted_smap:
|
238 |
+
anime_id = inverted_smap[idx]
|
239 |
+
|
240 |
+
if anime_id in favorite_anime_ids:
|
241 |
+
continue
|
242 |
+
|
243 |
+
if str(anime_id) in self.id_to_anime:
|
244 |
+
# Filter check
|
245 |
+
if filters and not self._should_include_anime(anime_id, filters):
|
246 |
+
continue
|
247 |
+
|
248 |
+
anime_data = self.id_to_anime.get(str(anime_id))
|
249 |
+
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
|
250 |
+
|
251 |
+
image_url = self.get_anime_image_url(anime_id)
|
252 |
+
mal_url = self.get_anime_mal_url(anime_id)
|
253 |
+
|
254 |
+
recommendations.append({
|
255 |
+
'id': anime_id,
|
256 |
+
'name': anime_name,
|
257 |
+
'score': float(score),
|
258 |
+
'image_url': image_url,
|
259 |
+
'mal_url': mal_url,
|
260 |
+
'genres': self.get_anime_genres(anime_id),
|
261 |
+
'type': self._get_type(anime_id)
|
262 |
+
})
|
263 |
+
scores.append(float(score))
|
264 |
+
|
265 |
+
if len(recommendations) >= num_recommendations:
|
266 |
+
break
|
267 |
+
|
268 |
+
# Memory cleanup
|
269 |
+
del logits, last_logits, top_scores, top_indices
|
270 |
+
gc.collect()
|
271 |
+
|
272 |
+
return recommendations, scores, f"Found {len(recommendations)} recommendations!"
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
return [], [], f"Error during prediction: {str(e)}"
|
276 |
+
|
277 |
+
def _should_include_anime(self, anime_id, filters):
|
278 |
+
"""Check if anime should be included based on filters"""
|
279 |
+
if not filters:
|
280 |
+
return True
|
281 |
+
|
282 |
+
type_seq_info = self.id_to_type_seq.get(str(anime_id))
|
283 |
+
if not type_seq_info or len(type_seq_info) < 2:
|
284 |
+
return True
|
285 |
+
|
286 |
+
anime_type = type_seq_info[0]
|
287 |
+
is_sequel = type_seq_info[1] if len(type_seq_info) > 1 else False
|
288 |
+
is_hentai = type_seq_info[2] if len(type_seq_info) > 2 else False
|
289 |
+
|
290 |
+
# Hentai filter
|
291 |
+
if not filters.get('show_hentai', True) and is_hentai:
|
292 |
+
return False
|
293 |
+
|
294 |
+
# Sequel filter
|
295 |
+
if not filters.get('show_sequels', True) and is_sequel:
|
296 |
+
return False
|
297 |
+
|
298 |
+
# Type filters
|
299 |
+
if not filters.get('show_movies', True) and anime_type == 'MOVIE':
|
300 |
+
return False
|
301 |
+
if not filters.get('show_tv', True) and anime_type == 'TV':
|
302 |
+
return False
|
303 |
+
if not filters.get('show_ova', True) and anime_type in ['ONA', 'OVA', 'SPECIAL']:
|
304 |
+
return False
|
305 |
+
|
306 |
+
return True
|
307 |
+
|
308 |
+
# Global recommendation system
|
309 |
+
recommendation_system = None
|
310 |
+
|
311 |
+
def initialize_system():
|
312 |
+
global recommendation_system
|
313 |
+
if recommendation_system is None:
|
314 |
+
try:
|
315 |
+
args.num_items = 12689
|
316 |
+
|
317 |
+
file_ids = {
|
318 |
+
"1C6mdjblhiWGhRgbIk5DP2XCc4ElS9x8p": "pretrained_bert.pth",
|
319 |
+
"1U42cFrdLFT8NVNikT9C5SD9aAux7a5U2": "animes.json",
|
320 |
+
"1s-8FM1Wi2wOWJ9cstvm-O1_6XculTcTG": "dataset.pkl",
|
321 |
+
"1SOm1llcTKfhr-RTHC0dhaZ4AfWPs8wRx": "id_to_url.json",
|
322 |
+
"1vwJEMEOIYwvCKCCbbeaP0U_9L3NhvBzg": "anime_to_malurl.json",
|
323 |
+
"1_TyzON6ie2CqvzVNvPyc9prMTwLMefdu": "anime_to_typenseq.json",
|
324 |
+
"1G9O_ahyuJ5aO0cwoVnIXrlzMqjKrf2aw": "id_to_genres.json"
|
325 |
+
}
|
326 |
+
|
327 |
+
def download_from_gdrive(file_id, output_path):
|
328 |
+
url = f"https://drive.google.com/uc?id={file_id}"
|
329 |
+
try:
|
330 |
+
print(f"Downloading: {output_path}")
|
331 |
+
gdown.download(url, output_path, quiet=False)
|
332 |
+
print(f"Downloaded: {output_path}")
|
333 |
+
return True
|
334 |
+
except Exception as e:
|
335 |
+
print(f"Error downloading {output_path}: {e}")
|
336 |
+
return False
|
337 |
+
|
338 |
+
for file_id, filename in file_ids.items():
|
339 |
+
if not os.path.isfile(filename):
|
340 |
+
download_from_gdrive(file_id, filename)
|
341 |
+
|
342 |
+
recommendation_system = AnimeRecommendationSystem(
|
343 |
+
"pretrained_bert.pth",
|
344 |
+
"dataset.pkl",
|
345 |
+
"animes.json",
|
346 |
+
"id_to_url.json",
|
347 |
+
"anime_to_malurl.json",
|
348 |
+
"anime_to_typenseq.json",
|
349 |
+
"id_to_genres.json"
|
350 |
+
)
|
351 |
+
print("Recommendation system initialized successfully!")
|
352 |
+
|
353 |
+
except Exception as e:
|
354 |
+
print(f"Failed to initialize recommendation system: {e}")
|
355 |
+
return f"Error: {str(e)}"
|
356 |
+
|
357 |
+
return "System ready!"
|
358 |
+
|
359 |
+
def search_and_add_anime(query, favorites_state):
|
360 |
+
"""Search anime and return search results"""
|
361 |
+
if not recommendation_system:
|
362 |
+
return "System not initialized", favorites_state, ""
|
363 |
+
|
364 |
+
if not query.strip():
|
365 |
+
return "Please enter an anime name to search", favorites_state, ""
|
366 |
+
|
367 |
+
# Search for anime
|
368 |
+
result = recommendation_system.find_closest_anime(query.strip())
|
369 |
+
|
370 |
+
if result:
|
371 |
+
anime_id, anime_name = result
|
372 |
+
|
373 |
+
# Check if already in favorites
|
374 |
+
if anime_id in favorites_state:
|
375 |
+
return f"'{anime_name}' is already in your favorites", favorites_state, ""
|
376 |
+
|
377 |
+
# Add to favorites
|
378 |
+
if len(favorites_state) >= 15:
|
379 |
+
return "Maximum 15 favorite animes allowed", favorites_state, ""
|
380 |
+
|
381 |
+
favorites_state.append(anime_id)
|
382 |
+
return f"Added '{anime_name}' to favorites", favorites_state, ""
|
383 |
+
else:
|
384 |
+
return f"No anime found matching '{query}'", favorites_state, ""
|
385 |
+
|
386 |
+
def get_favorites_display(favorites_state):
|
387 |
+
"""Get display string for favorites"""
|
388 |
+
if not favorites_state or not recommendation_system:
|
389 |
+
return "No favorites added yet"
|
390 |
+
|
391 |
+
display = "Your Favorite Animes:\n"
|
392 |
+
for i, anime_id in enumerate(favorites_state, 1):
|
393 |
+
anime_data = recommendation_system.id_to_anime.get(str(anime_id))
|
394 |
+
if anime_data:
|
395 |
+
anime_name = anime_data[0] if isinstance(anime_data, list) else str(anime_data)
|
396 |
+
display += f"{i}. {anime_name}\n"
|
397 |
+
|
398 |
+
return display
|
399 |
+
|
400 |
+
def clear_favorites(favorites_state):
|
401 |
+
"""Clear all favorites"""
|
402 |
+
return "Favorites cleared", [], ""
|
403 |
+
|
404 |
+
def get_recommendations_gradio(favorites_state, num_recs, show_hentai, show_sequels, show_movies, show_tv, show_ova):
|
405 |
+
"""Get recommendations for Gradio interface"""
|
406 |
+
if not recommendation_system:
|
407 |
+
return "System not initialized"
|
408 |
+
|
409 |
+
if not favorites_state:
|
410 |
+
return "Please add some favorite animes first!"
|
411 |
+
|
412 |
+
# Prepare filters
|
413 |
+
filters = {
|
414 |
+
'show_hentai': show_hentai,
|
415 |
+
'show_sequels': show_sequels,
|
416 |
+
'show_movies': show_movies,
|
417 |
+
'show_tv': show_tv,
|
418 |
+
'show_ova': show_ova
|
419 |
+
}
|
420 |
+
|
421 |
+
recommendations, scores, message = recommendation_system.get_recommendations(
|
422 |
+
favorites_state,
|
423 |
+
num_recommendations=int(num_recs),
|
424 |
+
filters=filters
|
425 |
+
)
|
426 |
+
|
427 |
+
if not recommendations:
|
428 |
+
return f"No recommendations found. {message}"
|
429 |
+
|
430 |
+
# Format recommendations
|
431 |
+
result = f"**{message}**\n\n"
|
432 |
+
|
433 |
+
for i, rec in enumerate(recommendations, 1):
|
434 |
+
result += f"**{i}. {rec['name']}**\n"
|
435 |
+
result += f"Score: {rec['score']:.4f}\n"
|
436 |
+
result += f"Type: {rec.get('type', 'Unknown')}\n"
|
437 |
+
|
438 |
+
if rec['genres']:
|
439 |
+
result += f"Genres: {', '.join(rec['genres'])}\n"
|
440 |
+
|
441 |
+
if rec.get('mal_url'):
|
442 |
+
result += f"[MyAnimeList Link]({rec['mal_url']})\n"
|
443 |
+
|
444 |
+
result += "\n" + "-"*50 + "\n\n"
|
445 |
+
|
446 |
+
return result
|
447 |
+
|
448 |
+
def create_interface():
|
449 |
+
# Initialize system
|
450 |
+
init_status = initialize_system()
|
451 |
+
print(init_status)
|
452 |
+
|
453 |
+
with gr.Blocks(title="Anime Recommendation System", theme=gr.themes.Soft()) as demo:
|
454 |
+
# State for favorites
|
455 |
+
favorites_state = gr.State([])
|
456 |
+
|
457 |
+
gr.HTML("""
|
458 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
459 |
+
<h1>🎌 Anime Recommendation System</h1>
|
460 |
+
<p>Add your favorite animes and get personalized recommendations!</p>
|
461 |
+
</div>
|
462 |
+
""")
|
463 |
+
|
464 |
+
with gr.Tab("Add Favorites"):
|
465 |
+
with gr.Row():
|
466 |
+
with gr.Column(scale=2):
|
467 |
+
search_input = gr.Textbox(
|
468 |
+
label="Search Anime",
|
469 |
+
placeholder="Enter anime name (e.g., 'Mushoku Tensei', 'Attack on Titan')",
|
470 |
+
lines=1
|
471 |
+
)
|
472 |
+
|
473 |
+
with gr.Row():
|
474 |
+
add_btn = gr.Button("Add to Favorites", variant="primary")
|
475 |
+
clear_btn = gr.Button("Clear All Favorites", variant="secondary")
|
476 |
+
|
477 |
+
with gr.Column(scale=2):
|
478 |
+
status_output = gr.Textbox(label="Status", lines=2)
|
479 |
+
favorites_display = gr.Textbox(
|
480 |
+
label="Your Favorites",
|
481 |
+
lines=10,
|
482 |
+
interactive=False,
|
483 |
+
value="No favorites added yet"
|
484 |
+
)
|
485 |
+
|
486 |
+
with gr.Tab("Get Recommendations"):
|
487 |
+
with gr.Row():
|
488 |
+
with gr.Column(scale=1):
|
489 |
+
gr.Markdown("### Recommendation Settings")
|
490 |
+
|
491 |
+
num_recs = gr.Slider(
|
492 |
+
minimum=5,
|
493 |
+
maximum=50,
|
494 |
+
value=20,
|
495 |
+
step=5,
|
496 |
+
label="Number of Recommendations"
|
497 |
+
)
|
498 |
+
|
499 |
+
gr.Markdown("### Filters")
|
500 |
+
show_movies = gr.Checkbox(label="Include Movies", value=True)
|
501 |
+
show_tv = gr.Checkbox(label="Include TV Series", value=True)
|
502 |
+
show_ova = gr.Checkbox(label="Include OVA/ONA/Special", value=True)
|
503 |
+
show_sequels = gr.Checkbox(label="Include Sequels", value=True)
|
504 |
+
show_hentai = gr.Checkbox(label="Include Hentai", value=False)
|
505 |
+
|
506 |
+
recommend_btn = gr.Button("Get Recommendations", variant="primary")
|
507 |
+
|
508 |
+
with gr.Column(scale=2):
|
509 |
+
recommendations_output = gr.Markdown(
|
510 |
+
label="Recommendations",
|
511 |
+
value="Add some favorite animes and click 'Get Recommendations'"
|
512 |
+
)
|
513 |
+
|
514 |
+
# Event handlers
|
515 |
+
add_btn.click(
|
516 |
+
fn=search_and_add_anime,
|
517 |
+
inputs=[search_input, favorites_state],
|
518 |
+
outputs=[status_output, favorites_state, search_input]
|
519 |
+
).then(
|
520 |
+
fn=get_favorites_display,
|
521 |
+
inputs=[favorites_state],
|
522 |
+
outputs=[favorites_display]
|
523 |
+
)
|
524 |
+
|
525 |
+
clear_btn.click(
|
526 |
+
fn=clear_favorites,
|
527 |
+
inputs=[favorites_state],
|
528 |
+
outputs=[status_output, favorites_state, search_input]
|
529 |
+
).then(
|
530 |
+
fn=get_favorites_display,
|
531 |
+
inputs=[favorites_state],
|
532 |
+
outputs=[favorites_display]
|
533 |
+
)
|
534 |
+
|
535 |
+
recommend_btn.click(
|
536 |
+
fn=get_recommendations_gradio,
|
537 |
+
inputs=[
|
538 |
+
favorites_state, num_recs, show_hentai, show_sequels,
|
539 |
+
show_movies, show_tv, show_ova
|
540 |
+
],
|
541 |
+
outputs=[recommendations_output]
|
542 |
+
)
|
543 |
+
|
544 |
+
# Examples
|
545 |
+
with gr.Tab("Examples"):
|
546 |
+
gr.Markdown("""
|
547 |
+
### How to use:
|
548 |
+
1. **Add Favorites**: Search and add your favorite animes
|
549 |
+
2. **Set Filters**: Choose what types of anime to include
|
550 |
+
3. **Get Recommendations**: Click to get personalized suggestions
|
551 |
+
|
552 |
+
### Example Searches:
|
553 |
+
- Mushoku Tensei
|
554 |
+
- Attack on Titan
|
555 |
+
- Demon Slayer
|
556 |
+
- Your Name
|
557 |
+
- Spirited Away
|
558 |
+
- One Piece
|
559 |
+
- Naruto
|
560 |
+
""")
|
561 |
+
|
562 |
+
return demo
|
563 |
+
|
564 |
+
if __name__ == "__main__":
|
565 |
+
demo = create_interface()
|
566 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|