Spaces:
Running
Running
def set_template(args): | |
if args.template is None: | |
return | |
elif args.template.startswith('train_bert'): | |
args.mode = 'train' | |
args.dataset_code = 'AnimeRatings54M' | |
args.min_rating = 7 | |
args.min_uc = 10 | |
args.min_sc = 10 | |
args.split = 'leave_one_out' | |
args.dataloader_code = 'bert' | |
batch = 128 | |
args.train_batch_size = batch | |
args.val_batch_size = batch | |
args.test_batch_size = batch | |
args.train_negative_sampler_code = 'random' | |
args.train_negative_sample_size = 100 | |
args.train_negative_sampling_seed = 0 | |
args.test_negative_sampler_code = 'random' | |
args.test_negative_sample_size = 100 | |
args.test_negative_sampling_seed = 98765 | |
args.trainer_code = 'bert' | |
args.device = 'cuda' | |
args.num_gpu = 1 | |
args.device_idx = '0' | |
args.optimizer = 'Adam' | |
args.lr = 0.001 | |
args.enable_lr_schedule = True | |
args.decay_step = 25 | |
args.gamma = 1.0 | |
args.num_epochs = 5 | |
args.metric_ks = [1, 5, 10, 20, 50, 100] | |
args.best_metric = 'NDCG@10' | |
args.model_code = 'bert' | |
args.model_init_seed = 0 | |
args.bert_dropout = 0.2 | |
args.weight_decay = 1e-4 | |
args.bert_hidden_units = 256 | |
args.bert_mask_prob = 0.15 | |
args.bert_max_len = 128 | |
args.bert_num_blocks = 2 | |
args.bert_num_heads = 4 | |
elif args.template.startswith('train_dae'): | |
args.mode = 'train' | |
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm' | |
args.min_rating = 7 | |
args.min_uc = 20 | |
args.min_sc = 20 | |
args.split = 'holdout' | |
args.dataset_split_seed = 98765 | |
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 20000 | |
args.dataloader_code = 'ae' | |
batch = 128 | |
args.train_batch_size = batch | |
args.val_batch_size = batch | |
args.test_batch_size = batch | |
args.trainer_code = 'dae' | |
args.device = 'cuda' | |
args.num_gpu = 1 | |
args.device_idx = '0' | |
args.optimizer = 'Adam' | |
args.lr = 1e-3 | |
args.enable_lr_schedule = False | |
args.weight_decay = 1e-4 | |
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200 | |
args.metric_ks = [1, 5, 10, 20, 50, 100] | |
args.best_metric = 'NDCG@10' | |
args.model_code = 'dae' | |
args.model_init_seed = 0 | |
args.dae_num_hidden = 2 | |
args.dae_hidden_dim = 600 | |
args.dae_latent_dim = 200 | |
args.dae_dropout = 0.5 | |
elif args.template.startswith('train_vae_search_beta'): | |
args.mode = 'train' | |
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm' | |
args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4 | |
args.min_uc = 5 | |
args.min_sc = 0 | |
args.split = 'holdout' | |
args.dataset_split_seed = 98765 | |
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000 | |
args.dataloader_code = 'ae' | |
batch = 128 if args.dataset_code == 'ml-1m' else 512 | |
args.train_batch_size = batch | |
args.val_batch_size = batch | |
args.test_batch_size = batch | |
args.trainer_code = 'vae' | |
args.device = 'cuda' | |
args.num_gpu = 1 | |
args.device_idx = '0' | |
args.optimizer = 'Adam' | |
args.lr = 1e-3 | |
args.enable_lr_schedule = False | |
args.weight_decay = 0.01 | |
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200 | |
args.metric_ks = [1, 5, 10, 20, 50, 100] | |
args.best_metric = 'NDCG@10' | |
args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000 | |
args.find_best_beta = True | |
args.model_code = 'vae' | |
args.model_init_seed = 0 | |
args.vae_num_hidden = 2 | |
args.vae_hidden_dim = 600 | |
args.vae_latent_dim = 200 | |
args.vae_dropout = 0.5 | |
elif args.template.startswith('train_vae_give_beta'): | |
args.mode = 'train' | |
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm' | |
args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4 | |
args.min_uc = 5 | |
args.min_sc = 0 | |
args.split = 'holdout' | |
args.dataset_split_seed = 98765 | |
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000 | |
args.dataloader_code = 'ae' | |
batch = 128 if args.dataset_code == 'ml-1m' else 512 | |
args.train_batch_size = batch | |
args.val_batch_size = batch | |
args.test_batch_size = batch | |
args.trainer_code = 'vae' | |
args.device = 'cuda' | |
args.num_gpu = 1 | |
args.device_idx = '0' | |
args.optimizer = 'Adam' | |
args.lr = 1e-3 | |
args.enable_lr_schedule = False | |
args.weight_decay = 0.01 | |
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200 | |
args.metric_ks = [1, 5, 10, 20, 50, 100] | |
args.best_metric = 'NDCG@100' | |
args.find_best_beta = False | |
args.anneal_cap = 0.342 | |
args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000 | |
args.model_code = 'vae' | |
args.model_init_seed = 0 | |
args.vae_num_hidden = 2 | |
args.vae_hidden_dim = 600 | |
args.vae_latent_dim = 200 | |
args.vae_dropout = 0.5 | |