Spaces:
Running
Running
import torch.nn as nn | |
import torch | |
import math | |
class PositionalEmbedding(nn.Module): | |
def __init__(self, max_len, d_model): | |
super().__init__() | |
# Compute the positional encodings once in log space. | |
self.pe = nn.Embedding(max_len, d_model) | |
def forward(self, x): | |
batch_size = x.size(0) | |
return self.pe.weight.unsqueeze(0).repeat(batch_size, 1, 1) | |