Spaces:
Running
Running
import torch.nn as nn | |
from .token import TokenEmbedding | |
from .position import PositionalEmbedding | |
class BERTEmbedding(nn.Module): | |
""" | |
BERT Embedding which is consisted with under features | |
1. TokenEmbedding : normal embedding matrix | |
2. PositionalEmbedding : adding positional information using sin, cos | |
2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2) | |
sum of all these features are output of BERTEmbedding | |
""" | |
def __init__(self, vocab_size, embed_size, max_len, dropout=0.1): | |
""" | |
:param vocab_size: total vocab size | |
:param embed_size: embedding size of token embedding | |
:param dropout: dropout rate | |
""" | |
super().__init__() | |
self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size) | |
self.position = PositionalEmbedding(max_len=max_len, d_model=embed_size) | |
# self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim) | |
self.dropout = nn.Dropout(p=dropout) | |
self.embed_size = embed_size | |
def forward(self, sequence): | |
x = self.token(sequence) # + self.position(sequence) # + self.segment(segment_label) | |
return self.dropout(x) | |