Spaces:
Running
Running
File size: 29,834 Bytes
426ffb5 5724e66 426ffb5 95959b1 426ffb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
from flask import Flask, render_template, request, jsonify, session, Response
import sys
import pickle
import json
import gc
import weakref
from pathlib import Path
from utils import *
from options import args
from models import model_factory
from flask_socketio import SocketIO, emit
from datetime import datetime
import random
import re
import xml.etree.ElementTree as ET
app = Flask(__name__)
app.secret_key = '1903bjk'
socketio = SocketIO(app, cors_allowed_origins="*")
# Memory-efficient chat system
class ChatManager:
def __init__(self, max_messages=100): # Reduced from 300
self.messages = []
self.active_users = {}
self.max_messages = max_messages
def add_message(self, message):
self.messages.append(message)
if len(self.messages) > self.max_messages:
self.messages.pop(0)
def get_messages(self):
return self.messages
def add_user(self, sid, username):
self.active_users[sid] = {
'username': username,
'connected_at': datetime.now()
}
def remove_user(self, sid):
return self.active_users.pop(sid, None)
def get_user_count(self):
return len(self.active_users)
def get_username(self, sid):
user = self.active_users.get(sid)
return user['username'] if user else None
def update_username(self, sid, new_username):
if sid in self.active_users:
self.active_users[sid]['username'] = new_username
chat_manager = ChatManager()
def generate_username():
adjectives = ['Cool', 'Awesome', 'Swift', 'Bright', 'Happy', 'Smart', 'Kind', 'Brave', 'Calm', 'Epic', "Black"]
nouns = ['Otaku', 'Ninja', 'Samurai', 'Dragon', 'Phoenix', 'Tiger', 'Wolf', 'Eagle', 'Fox', 'Bear']
return f"{random.choice(adjectives)}{random.choice(nouns)}{random.randint(100, 999)}"
def clean_message(message):
# HTML tag'leri temizle
message = re.sub(r'<[^>]*>', '', message)
# Uzunluk kontrolü
if len(message) > 500:
message = message[:500]
return message.strip()
# Lazy loading için wrapper class
class LazyDict:
def __init__(self, file_path):
self.file_path = file_path
self._data = None
self._loaded = False
def _load_data(self):
if not self._loaded:
try:
with open(self.file_path, "r", encoding="utf-8") as file:
self._data = json.load(file)
self._loaded = True
except Exception as e:
print(f"Warning: Could not load {self.file_path}: {str(e)}")
self._data = {}
self._loaded = True
def get(self, key, default=None):
self._load_data()
return self._data.get(key, default)
def __contains__(self, key):
self._load_data()
return key in self._data
def items(self):
self._load_data()
return self._data.items()
def keys(self):
self._load_data()
return self._data.keys()
def __len__(self):
self._load_data()
return len(self._data)
# Sitemap route'ları
@app.route('/sitemap.xml')
def sitemap():
"""Dinamik sitemap.xml oluşturur"""
try:
# XML root element
urlset = ET.Element('urlset')
urlset.set('xmlns', 'http://www.sitemaps.org/schemas/sitemap/0.9')
urlset.set('xmlns:image', 'http://www.google.com/schemas/sitemap-image/1.1')
# Base URL
base_url = request.url_root.rstrip('/')
current_date = datetime.now().strftime('%Y-%m-%d')
# Ana sayfa
url = ET.SubElement(urlset, 'url')
ET.SubElement(url, 'loc').text = f'{base_url}/'
ET.SubElement(url, 'lastmod').text = current_date
ET.SubElement(url, 'changefreq').text = 'daily'
ET.SubElement(url, 'priority').text = '1.0'
# Chat sayfası
url = ET.SubElement(urlset, 'url')
ET.SubElement(url, 'loc').text = f'{base_url}/chat'
ET.SubElement(url, 'lastmod').text = current_date
ET.SubElement(url, 'changefreq').text = 'hourly'
ET.SubElement(url, 'priority').text = '0.8'
# Anime sayfaları (sadece ilk 50 anime - SEO için)
if recommendation_system and recommendation_system.id_to_anime:
anime_count = 0
for anime_id, anime_data in recommendation_system.id_to_anime.items():
if anime_count >= 50: # Reduced from 100
break
try:
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
safe_name = anime_name.replace(' ', '-').replace('/', '-').replace('?', '').replace('&', 'and')
safe_name = re.sub(r'[^\w\-]', '', safe_name)
url = ET.SubElement(urlset, 'url')
ET.SubElement(url, 'loc').text = f'{base_url}/anime/{anime_id}/{safe_name}'
ET.SubElement(url, 'lastmod').text = current_date
ET.SubElement(url, 'changefreq').text = 'weekly'
ET.SubElement(url, 'priority').text = '0.6'
# Sadece gerekli durumlarda resim URL'si ekle
if anime_count < 20: # Sadece ilk 20 anime için resim
image_url = recommendation_system.get_anime_image_url(int(anime_id))
if image_url:
image_elem = ET.SubElement(url, 'image:image')
ET.SubElement(image_elem, 'image:loc').text = image_url
ET.SubElement(image_elem, 'image:title').text = anime_name
ET.SubElement(image_elem, 'image:caption').text = f'Poster image for {anime_name}'
anime_count += 1
except Exception as e:
print(f"Error processing anime {anime_id}: {e}")
continue
# XML'i string'e çevir
xml_str = ET.tostring(urlset, encoding='unicode')
xml_declaration = '<?xml version="1.0" encoding="UTF-8"?>\n'
full_xml = xml_declaration + xml_str
return Response(full_xml, mimetype='application/xml')
except Exception as e:
print(f"Sitemap generation error: {e}")
return Response(
'<?xml version="1.0" encoding="UTF-8"?><urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"></urlset>',
mimetype='application/xml')
@app.route('/robots.txt')
def robots_txt():
"""Robots.txt dosyası"""
robots_content = f"""User-agent: *
Allow: /
Allow: /chat
Sitemap: {request.url_root.rstrip('/')}/sitemap.xml
"""
return Response(robots_content, mimetype='text/plain')
@app.route('/anime/<int:anime_id>/<path:anime_name>')
def anime_detail(anime_id, anime_name):
"""Anime detay sayfası (SEO için)"""
if not recommendation_system or str(anime_id) not in recommendation_system.id_to_anime:
return render_template('error.html', error="Anime not found"), 404
anime_data = recommendation_system.id_to_anime.get(str(anime_id))
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
# Anime bilgilerini lazy loading ile al
image_url = recommendation_system.get_anime_image_url(anime_id)
mal_url = recommendation_system.get_anime_mal_url(anime_id)
genres = recommendation_system.get_anime_genres(anime_id)
anime_type = recommendation_system._get_type(anime_id)
# Benzer animeler öner (sadece 5 tane)
similar_animes = []
try:
recommendations, _, _ = recommendation_system.get_recommendations([anime_id], num_recommendations=5)
similar_animes = recommendations
except:
pass
anime_info = {
'id': anime_id,
'name': anime_name,
'image_url': image_url,
'mal_url': mal_url,
'genres': genres,
'similar_animes': similar_animes,
'type': anime_type
}
# JSON-LD structured data oluştur
structured_data = generate_anime_structured_data(anime_info)
return render_template('anime_detail.html', anime=anime_info, structured_data=json.dumps(structured_data))
def generate_anime_structured_data(anime_info):
"""Anime için JSON-LD structured data oluşturur"""
structured_data = {
"@context": "https://schema.org",
"@type": anime_info["type"],
"name": anime_info['name'],
"url": f"{request.url_root.rstrip('/')}/anime/{anime_info['id']}/{anime_info['name'].replace(' ', '-')}"
}
if anime_info['genres']:
structured_data["genre"] = anime_info['genres']
if anime_info['image_url']:
structured_data["image"] = anime_info['image_url']
if anime_info['mal_url']:
structured_data["sameAs"] = anime_info['mal_url']
return structured_data
@app.route('/sitemap-index.xml')
def sitemap_index():
"""Sitemap index dosyası"""
try:
sitemapindex = ET.Element('sitemapindex')
sitemapindex.set('xmlns', 'http://www.sitemaps.org/schemas/sitemap/0.9')
base_url = request.url_root.rstrip('/')
current_date = datetime.now().strftime('%Y-%m-%d')
# Ana sitemap
sitemap = ET.SubElement(sitemapindex, 'sitemap')
ET.SubElement(sitemap, 'loc').text = f'{base_url}/sitemap.xml'
ET.SubElement(sitemap, 'lastmod').text = current_date
xml_str = ET.tostring(sitemapindex, encoding='unicode')
xml_declaration = '<?xml version="1.0" encoding="UTF-8"?>\n'
full_xml = xml_declaration + xml_str
return Response(full_xml, mimetype='application/xml')
except Exception as e:
print(f"Sitemap index generation error: {e}")
return Response(
'<?xml version="1.0" encoding="UTF-8"?><sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"></sitemapindex>',
mimetype='application/xml')
@app.route('/chat')
def chat():
return render_template('chat.html')
# SocketIO event'leri
@socketio.on('connect')
def on_connect():
username = generate_username()
chat_manager.add_user(request.sid, username)
# Kullanıcıya mevcut mesajları gönder
emit('chat_history', chat_manager.get_messages())
# Kullanıcı katıldı mesajı
join_message = {
'username': 'System',
'message': f'{username} joined the chat',
'timestamp': datetime.now().strftime('%H:%M'),
'type': 'system'
}
chat_manager.add_message(join_message)
emit('new_message', join_message, broadcast=True)
emit('user_count', chat_manager.get_user_count(), broadcast=True)
@socketio.on('disconnect')
def on_disconnect():
user = chat_manager.remove_user(request.sid)
if user:
username = user['username']
leave_message = {
'username': 'System',
'message': f'{username} left the chat',
'timestamp': datetime.now().strftime('%H:%M'),
'type': 'system'
}
chat_manager.add_message(leave_message)
emit('new_message', leave_message, broadcast=True)
emit('user_count', chat_manager.get_user_count(), broadcast=True)
@socketio.on('send_message')
def handle_message(data):
username = chat_manager.get_username(request.sid)
if not username:
return
message = clean_message(data.get('message', ''))
if not message:
return
message_obj = {
'username': username,
'message': message,
'timestamp': datetime.now().strftime('%H:%M'),
'type': 'user'
}
chat_manager.add_message(message_obj)
emit('new_message', message_obj, broadcast=True)
@socketio.on('change_username')
def handle_username_change(data):
old_username = chat_manager.get_username(request.sid)
if not old_username:
return
new_username = clean_message(data.get('username', ''))
if not new_username or len(new_username) < 2:
return
chat_manager.update_username(request.sid, new_username)
change_message = {
'username': 'System',
'message': f'{old_username} changed name to {new_username}',
'timestamp': datetime.now().strftime('%H:%M'),
'type': 'system'
}
chat_manager.add_message(change_message)
emit('new_message', change_message, broadcast=True)
emit('username_changed', {'username': new_username})
class AnimeRecommendationSystem:
def __init__(self, checkpoint_path, dataset_path, animes_path, images_path, mal_urls_path, type_seq_path, genres_path):
self.model = None
self.dataset = None
self.checkpoint_path = checkpoint_path
self.dataset_path = dataset_path
self.animes_path = animes_path
# Lazy loading ile memory optimization
self.id_to_anime = LazyDict(animes_path)
self.id_to_url = LazyDict(images_path)
self.id_to_mal_url = LazyDict(mal_urls_path)
self.id_to_type_seq = LazyDict(type_seq_path)
self.id_to_genres = LazyDict(genres_path)
# Cache için weak reference kullan
self._cache = {}
self.load_model_and_data()
def load_model_and_data(self):
try:
print("Loading model and data...")
args.bert_max_len = 128
# Dataset'i yükle
dataset_path = Path(self.dataset_path)
with dataset_path.open('rb') as f:
self.dataset = pickle.load(f)
# Model'i yükle
self.model = model_factory(args)
self.load_checkpoint()
# Garbage collection
gc.collect()
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {str(e)}")
raise e
def load_checkpoint(self):
try:
with open(self.checkpoint_path, 'rb') as f:
checkpoint = torch.load(f, map_location='cpu', weights_only=False)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.eval()
# Checkpoint'i bellekten temizle
del checkpoint
gc.collect()
except Exception as e:
raise Exception(f"Failed to load checkpoint from {self.checkpoint_path}: {str(e)}")
def get_anime_genres(self, anime_id):
genres = self.id_to_genres.get(str(anime_id), [])
return [genre.title() for genre in genres] if genres else []
def get_all_animes(self):
"""Tüm anime listesini döndürür - cache kullanır"""
cache_key = 'all_animes'
if cache_key in self._cache:
return self._cache[cache_key]
animes = []
# Sadece gerekli durumlarda yükle
for k, v in list(self.id_to_anime.items())[:1000]: # İlk 1000 anime
anime_name = v[0] if isinstance(v, list) and len(v) > 0 else str(v)
animes.append((int(k), anime_name))
animes.sort(key=lambda x: x[1])
self._cache[cache_key] = animes
return animes
def get_anime_image_url(self, anime_id):
return self.id_to_url.get(str(anime_id), None)
def get_anime_mal_url(self, anime_id):
return self.id_to_mal_url.get(str(anime_id), None)
def get_filtered_anime_pool(self, filters):
"""Filtrelere göre anime havuzunu önceden filtreler"""
if not filters:
return None
if filters.get('show_hentai') and len([k for k, v in filters.items() if v]) == 1:
hentai_animes = []
# Sadece gerekli verileri kontrol et
for anime_id_str in list(self.id_to_anime.keys())[:500]: # Limit
anime_id = int(anime_id_str)
if self._is_hentai(anime_id):
hentai_animes.append(anime_id)
return hentai_animes
return None
def _is_hentai(self, anime_id):
"""Anime'nin hentai olup olmadığını kontrol eder"""
type_seq_info = self.id_to_type_seq.get(str(anime_id))
if not type_seq_info or len(type_seq_info) < 3:
return False
return type_seq_info[2]
def _get_type(self, anime_id):
"""Anime tipini döndürür"""
type_seq_info = self.id_to_type_seq.get(str(anime_id))
if not type_seq_info or len(type_seq_info) < 2:
return "Unknown"
return type_seq_info[1]
def get_recommendations(self, favorite_anime_ids, num_recommendations=20, filters=None): # Reduced from 40
try:
if not favorite_anime_ids:
return [], [], "Please add some favorite animes first!"
smap = self.dataset
inverted_smap = {v: k for k, v in smap.items()}
converted_ids = []
for anime_id in favorite_anime_ids:
if anime_id in smap:
converted_ids.append(smap[anime_id])
if not converted_ids:
return [], [], "None of the selected animes are in the model vocabulary!"
# Hentai filtresi özel durumu
filtered_pool = self.get_filtered_anime_pool(filters)
if filtered_pool is not None:
return self._get_recommendations_from_pool(favorite_anime_ids, filtered_pool, num_recommendations, filters)
# Normal öneriler
target_len = 128
padded = converted_ids + [0] * (target_len - len(converted_ids))
input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)
max_predictions = min(75, len(inverted_smap)) # Reduced from 125
with torch.no_grad():
logits = self.model(input_tensor)
last_logits = logits[:, -1, :]
top_scores, top_indices = torch.topk(last_logits, k=max_predictions, dim=1)
recommendations = []
scores = []
for idx, score in zip(top_indices.numpy()[0], top_scores.detach().numpy()[0]):
if idx in inverted_smap:
anime_id = inverted_smap[idx]
if anime_id in favorite_anime_ids:
continue
if str(anime_id) in self.id_to_anime:
# Filtreleme kontrolü
if filters and not self._should_include_anime(anime_id, filters):
continue
anime_data = self.id_to_anime.get(str(anime_id))
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
# Lazy loading ile image ve mal url al
image_url = self.get_anime_image_url(anime_id)
mal_url = self.get_anime_mal_url(anime_id)
recommendations.append({
'id': anime_id,
'name': anime_name,
'score': float(score),
'image_url': image_url,
'mal_url': mal_url,
'genres': self.get_anime_genres(anime_id)
})
scores.append(float(score))
if len(recommendations) >= num_recommendations:
break
# Memory cleanup
del logits, last_logits, top_scores, top_indices
gc.collect()
return recommendations, scores, f"Found {len(recommendations)} recommendations!"
except Exception as e:
return [], [], f"Error during prediction: {str(e)}"
def _get_recommendations_from_pool(self, favorite_anime_ids, anime_pool, num_recommendations, filters):
"""Önceden filtrelenmiş anime havuzundan öneriler alır"""
try:
smap = self.dataset
converted_ids = []
for anime_id in favorite_anime_ids:
if anime_id in smap:
converted_ids.append(smap[anime_id])
if not converted_ids:
return [], [], "None of the selected animes are in the model vocabulary!"
target_len = 128
padded = converted_ids + [0] * (target_len - len(converted_ids))
input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)
with torch.no_grad():
logits = self.model(input_tensor)
last_logits = logits[:, -1, :]
# Anime havuzundaki her anime için skor hesapla
anime_scores = []
for anime_id in anime_pool:
if anime_id in favorite_anime_ids:
continue
if anime_id in smap:
model_id = smap[anime_id]
if model_id < last_logits.shape[1]:
score = last_logits[0, model_id].item()
anime_scores.append((anime_id, score))
# Skorlara göre sırala
anime_scores.sort(key=lambda x: x[1], reverse=True)
recommendations = []
for anime_id, score in anime_scores[:num_recommendations]:
if str(anime_id) in self.id_to_anime:
anime_data = self.id_to_anime.get(str(anime_id))
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
recommendations.append({
'id': anime_id,
'name': anime_name,
'score': float(score),
'image_url': self.get_anime_image_url(anime_id),
'mal_url': self.get_anime_mal_url(anime_id),
'genres': self.get_anime_genres(anime_id)
})
# Memory cleanup
del logits, last_logits
gc.collect()
return recommendations, [r['score'] for r in recommendations], f"Found {len(recommendations)} filtered recommendations!"
except Exception as e:
return [], [], f"Error during filtered prediction: {str(e)}"
def _should_include_anime(self, anime_id, filters):
"""Filtrelere göre anime'nin dahil edilip edilmeyeceğini kontrol eder"""
if 'blacklisted_animes' in filters:
if anime_id in filters['blacklisted_animes']:
return False
type_seq_info = self.id_to_type_seq.get(str(anime_id))
if not type_seq_info or len(type_seq_info) < 2:
return True
anime_type = type_seq_info[0]
is_sequel = type_seq_info[1]
is_hentai = type_seq_info[2]
# Sequel filtresi
if 'show_sequels' in filters:
if not filters['show_sequels'] and is_sequel:
return False
# Hentai filtresi
if 'show_hentai' in filters:
if filters['show_hentai']:
if not is_hentai:
return False
else:
if is_hentai:
return False
# Tür filtreleri
if 'show_movies' in filters:
if not filters['show_movies'] and anime_type == 'MOVIE':
return False
if 'show_tv' in filters:
if not filters['show_tv'] and anime_type == 'TV':
return False
if 'show_ova' in filters:
if not filters['show_ova'] and anime_type in ['ONA', 'OVA', 'SPECIAL']:
return False
return True
recommendation_system = None
@app.route('/')
def index():
if recommendation_system is None:
return render_template('error.html', error="Recommendation system not initialized. Please check server logs.")
animes = recommendation_system.get_all_animes()
return render_template('index.html', animes=animes)
@app.route('/api/search_animes')
def search_animes():
query = request.args.get('q', '').lower()
animes = []
# Sadece ilk 200 anime'yi arama - performance için
count = 0
for k, v in recommendation_system.id_to_anime.items():
if count >= 200:
break
anime_names = v if isinstance(v, list) else [v]
match_found = False
for name in anime_names:
if query in name.lower():
match_found = True
break
if not query or match_found:
main_name = anime_names[0] if anime_names else "Unknown"
animes.append((int(k), main_name))
count += 1
animes.sort(key=lambda x: x[1])
return jsonify(animes)
@app.route('/api/add_favorite', methods=['POST'])
def add_favorite():
if 'favorites' not in session:
session['favorites'] = []
data = request.get_json()
anime_id = int(data['anime_id'])
if anime_id not in session['favorites']:
# Maksimum 20 favori anime (memory için)
if len(session['favorites']) >= 20:
return jsonify({'success': False, 'message': 'Maximum 20 favorite animes allowed'})
session['favorites'].append(anime_id)
session.modified = True
return jsonify({'success': True})
else:
return jsonify({'success': False})
@app.route('/api/remove_favorite', methods=['POST'])
def remove_favorite():
if 'favorites' not in session:
session['favorites'] = []
data = request.get_json()
anime_id = int(data['anime_id'])
if anime_id in session['favorites']:
session['favorites'].remove(anime_id)
session.modified = True
return jsonify({'success': True})
else:
return jsonify({'success': False})
@app.route('/api/clear_favorites', methods=['POST'])
def clear_favorites():
session['favorites'] = []
session.modified = True
return jsonify({'success': True})
@app.route('/api/get_favorites')
def get_favorites():
if 'favorites' not in session:
session['favorites'] = []
favorite_animes = []
for anime_id in session['favorites']:
if str(anime_id) in recommendation_system.id_to_anime:
anime_data = recommendation_system.id_to_anime.get(str(anime_id))
anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
favorite_animes.append({'id': anime_id, 'name': anime_name})
return jsonify(favorite_animes)
@app.route('/api/get_recommendations', methods=['POST'])
def get_recommendations():
if 'favorites' not in session or not session['favorites']:
return jsonify({'success': False, 'message': 'Please add some favorite animes first!'})
data = request.get_json() or {}
filters = data.get('filters', {})
# Blacklist bilgisini ekle
blacklisted_animes = data.get('blacklisted_animes', [])
if blacklisted_animes:
filters['blacklisted_animes'] = blacklisted_animes
recommendations, scores, message = recommendation_system.get_recommendations(
session['favorites'],
filters=filters
)
if recommendations:
return jsonify({
'success': True,
'recommendations': recommendations,
'message': message
})
else:
return jsonify({'success': False, 'message': message})
@app.route('/api/mal_logo')
def get_mal_logo():
# MyAnimeList logo URL'ini döndür
return jsonify({
'success': True,
'logo_url': 'https://cdn.myanimelist.net/img/sp/icon/apple-touch-icon-256.png'
})
def main():
global recommendation_system
args.num_items = 15687
import gdown
import os
file_ids = {
"1C6mdjblhiWGhRgbIk5DP2XCc4ElS9x8p": "pretrained_bert.pth",
"1J1RmuJE5OjZUO0z1irVb2M-xnvuVvvHR": "animes.json",
"1xGxUCbCDUnbdnJa6Ab8wgM9cpInpeQnN": "dataset.pkl",
"1PtB6o_91tNWAb4zN0xj-Kf8SKvVAJp1c": "id_to_url.json",
"1xVfTB_CmeYEqq6-l_BkQXo-QAUEyBfbW": "anime_to_malurl.json",
"1zMbL9TpCbODKfVT5ahiaYILlnwBZNJc1": "anime_to_typenseq.json",
"1LLMRhYyw82GOz3d8SUDZF9YRJdybgAFA": "id_to_genres.json"
}
def download_from_gdrive(file_id, output_path):
url = f"https://drive.google.com/uc?id={file_id}"
try:
print(f"Downloading: {file_id}")
gdown.download(url, output_path, quiet=False)
print(f"Downloaded: {output_path}")
return True
except Exception as e:
print(f"Error: {e}")
return False
for key, value in file_ids.items():
if os.path.isfile(value):
continue
download_from_gdrive(key, value)
try:
images_path = "id_to_url.json"
mal_urls_path = "anime_to_malurl.json"
type_seq_path = "anime_to_typenseq.json"
if not os.path.exists(images_path):
print(f"Warning: {images_path} not found. Images will not be displayed.")
if not os.path.exists(mal_urls_path):
print(f"Warning: {mal_urls_path} not found. MAL links will not be available.")
recommendation_system = AnimeRecommendationSystem(
"pretrained_bert.pth",
"dataset.pkl",
"animes.json",
images_path,
mal_urls_path,
type_seq_path,
"id_to_genres.json"
)
print("Recommendation system initialized successfully!")
except Exception as e:
print(f"Failed to initialize recommendation system: {e}")
sys.exit(1)
app.run(debug=False, host='0.0.0.0', port=5000)
if __name__ == "__main__":
main()
|