Spaces:
Running
Running
File size: 5,383 Bytes
426ffb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
def set_template(args):
if args.template is None:
return
elif args.template.startswith('train_bert'):
args.mode = 'train'
args.dataset_code = 'AnimeRatings54M'
args.min_rating = 7
args.min_uc = 10
args.min_sc = 10
args.split = 'leave_one_out'
args.dataloader_code = 'bert'
batch = 128
args.train_batch_size = batch
args.val_batch_size = batch
args.test_batch_size = batch
args.train_negative_sampler_code = 'random'
args.train_negative_sample_size = 100
args.train_negative_sampling_seed = 0
args.test_negative_sampler_code = 'random'
args.test_negative_sample_size = 100
args.test_negative_sampling_seed = 98765
args.trainer_code = 'bert'
args.device = 'cuda'
args.num_gpu = 1
args.device_idx = '0'
args.optimizer = 'Adam'
args.lr = 0.001
args.enable_lr_schedule = True
args.decay_step = 25
args.gamma = 1.0
args.num_epochs = 5
args.metric_ks = [1, 5, 10, 20, 50, 100]
args.best_metric = 'NDCG@10'
args.model_code = 'bert'
args.model_init_seed = 0
args.bert_dropout = 0.2
args.weight_decay = 1e-4
args.bert_hidden_units = 256
args.bert_mask_prob = 0.15
args.bert_max_len = 128
args.bert_num_blocks = 2
args.bert_num_heads = 4
elif args.template.startswith('train_dae'):
args.mode = 'train'
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
args.min_rating = 7
args.min_uc = 20
args.min_sc = 20
args.split = 'holdout'
args.dataset_split_seed = 98765
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 20000
args.dataloader_code = 'ae'
batch = 128
args.train_batch_size = batch
args.val_batch_size = batch
args.test_batch_size = batch
args.trainer_code = 'dae'
args.device = 'cuda'
args.num_gpu = 1
args.device_idx = '0'
args.optimizer = 'Adam'
args.lr = 1e-3
args.enable_lr_schedule = False
args.weight_decay = 1e-4
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
args.metric_ks = [1, 5, 10, 20, 50, 100]
args.best_metric = 'NDCG@10'
args.model_code = 'dae'
args.model_init_seed = 0
args.dae_num_hidden = 2
args.dae_hidden_dim = 600
args.dae_latent_dim = 200
args.dae_dropout = 0.5
elif args.template.startswith('train_vae_search_beta'):
args.mode = 'train'
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4
args.min_uc = 5
args.min_sc = 0
args.split = 'holdout'
args.dataset_split_seed = 98765
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000
args.dataloader_code = 'ae'
batch = 128 if args.dataset_code == 'ml-1m' else 512
args.train_batch_size = batch
args.val_batch_size = batch
args.test_batch_size = batch
args.trainer_code = 'vae'
args.device = 'cuda'
args.num_gpu = 1
args.device_idx = '0'
args.optimizer = 'Adam'
args.lr = 1e-3
args.enable_lr_schedule = False
args.weight_decay = 0.01
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
args.metric_ks = [1, 5, 10, 20, 50, 100]
args.best_metric = 'NDCG@10'
args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000
args.find_best_beta = True
args.model_code = 'vae'
args.model_init_seed = 0
args.vae_num_hidden = 2
args.vae_hidden_dim = 600
args.vae_latent_dim = 200
args.vae_dropout = 0.5
elif args.template.startswith('train_vae_give_beta'):
args.mode = 'train'
args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4
args.min_uc = 5
args.min_sc = 0
args.split = 'holdout'
args.dataset_split_seed = 98765
args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000
args.dataloader_code = 'ae'
batch = 128 if args.dataset_code == 'ml-1m' else 512
args.train_batch_size = batch
args.val_batch_size = batch
args.test_batch_size = batch
args.trainer_code = 'vae'
args.device = 'cuda'
args.num_gpu = 1
args.device_idx = '0'
args.optimizer = 'Adam'
args.lr = 1e-3
args.enable_lr_schedule = False
args.weight_decay = 0.01
args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
args.metric_ks = [1, 5, 10, 20, 50, 100]
args.best_metric = 'NDCG@100'
args.find_best_beta = False
args.anneal_cap = 0.342
args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000
args.model_code = 'vae'
args.model_init_seed = 0
args.vae_num_hidden = 2
args.vae_hidden_dim = 600
args.vae_latent_dim = 200
args.vae_dropout = 0.5
|