File size: 5,383 Bytes
426ffb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def set_template(args):
    if args.template is None:
        return

    elif args.template.startswith('train_bert'):
        args.mode = 'train'

        args.dataset_code = 'AnimeRatings54M'
        args.min_rating = 7
        args.min_uc = 10
        args.min_sc = 10
        args.split = 'leave_one_out'

        args.dataloader_code = 'bert'
        batch = 128
        args.train_batch_size = batch
        args.val_batch_size = batch
        args.test_batch_size = batch

        args.train_negative_sampler_code = 'random'
        args.train_negative_sample_size = 100
        args.train_negative_sampling_seed = 0
        args.test_negative_sampler_code = 'random'
        args.test_negative_sample_size = 100
        args.test_negative_sampling_seed = 98765

        args.trainer_code = 'bert'
        args.device = 'cuda'
        args.num_gpu = 1
        args.device_idx = '0'
        args.optimizer = 'Adam'
        args.lr = 0.001
        args.enable_lr_schedule = True
        args.decay_step = 25
        args.gamma = 1.0
        args.num_epochs = 5
        args.metric_ks = [1, 5, 10, 20, 50, 100]
        args.best_metric = 'NDCG@10'

        args.model_code = 'bert'
        args.model_init_seed = 0

        args.bert_dropout = 0.2
        args.weight_decay = 1e-4
        args.bert_hidden_units = 256
        args.bert_mask_prob = 0.15
        args.bert_max_len = 128
        args.bert_num_blocks = 2
        args.bert_num_heads = 4
    
    elif args.template.startswith('train_dae'):
        args.mode = 'train'

        args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
        args.min_rating = 7
        args.min_uc = 20
        args.min_sc = 20
        args.split = 'holdout'
        args.dataset_split_seed = 98765
        args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 20000

        args.dataloader_code = 'ae'
        batch = 128
        args.train_batch_size = batch
        args.val_batch_size = batch
        args.test_batch_size = batch

        args.trainer_code = 'dae'
        args.device = 'cuda'
        args.num_gpu = 1
        args.device_idx = '0'
        args.optimizer = 'Adam'
        args.lr = 1e-3
        args.enable_lr_schedule = False
        args.weight_decay = 1e-4
        args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
        args.metric_ks = [1, 5, 10, 20, 50, 100]
        args.best_metric = 'NDCG@10'

        args.model_code = 'dae'
        args.model_init_seed = 0
        args.dae_num_hidden = 2
        args.dae_hidden_dim = 600
        args.dae_latent_dim = 200
        args.dae_dropout = 0.5

    elif args.template.startswith('train_vae_search_beta'):
        args.mode = 'train'

        args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
        args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4
        args.min_uc = 5
        args.min_sc = 0
        args.split = 'holdout'
        args.dataset_split_seed = 98765
        args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000

        args.dataloader_code = 'ae'
        batch = 128 if args.dataset_code == 'ml-1m' else 512
        args.train_batch_size = batch
        args.val_batch_size = batch
        args.test_batch_size = batch

        args.trainer_code = 'vae'
        args.device = 'cuda'
        args.num_gpu = 1
        args.device_idx = '0'
        args.optimizer = 'Adam'
        args.lr = 1e-3
        args.enable_lr_schedule = False
        args.weight_decay = 0.01
        args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
        args.metric_ks = [1, 5, 10, 20, 50, 100]
        args.best_metric = 'NDCG@10'
        args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000
        args.find_best_beta = True

        args.model_code = 'vae'
        args.model_init_seed = 0
        args.vae_num_hidden = 2
        args.vae_hidden_dim = 600
        args.vae_latent_dim = 200
        args.vae_dropout = 0.5
    
    elif args.template.startswith('train_vae_give_beta'):
        args.mode = 'train'

        args.dataset_code = 'ml-' + input('Input 1 for ml-1m, 20 for ml-20m: ') + 'm'
        args.min_rating = 0 if args.dataset_code == 'ml-1m' else 4
        args.min_uc = 5
        args.min_sc = 0
        args.split = 'holdout'
        args.dataset_split_seed = 98765
        args.eval_set_size = 500 if args.dataset_code == 'ml-1m' else 10000

        args.dataloader_code = 'ae'
        batch = 128 if args.dataset_code == 'ml-1m' else 512
        args.train_batch_size = batch
        args.val_batch_size = batch
        args.test_batch_size = batch

        args.trainer_code = 'vae'
        args.device = 'cuda'
        args.num_gpu = 1
        args.device_idx = '0'
        args.optimizer = 'Adam'
        args.lr = 1e-3
        args.enable_lr_schedule = False
        args.weight_decay = 0.01
        args.num_epochs = 100 if args.dataset_code == 'ml-1m' else 200
        args.metric_ks = [1, 5, 10, 20, 50, 100]
        args.best_metric = 'NDCG@100'
        args.find_best_beta = False
        args.anneal_cap = 0.342
        args.total_anneal_steps = 3000 if args.dataset_code == 'ml-1m' else 20000

        args.model_code = 'vae'
        args.model_init_seed = 0
        args.vae_num_hidden = 2
        args.vae_hidden_dim = 600
        args.vae_latent_dim = 200
        args.vae_dropout = 0.5