File size: 22,866 Bytes
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fafdf3c
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65cb9d
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf514bf
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16fc1de
d9ab129
 
 
16fc1de
 
 
 
 
 
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65cb9d
efe70ab
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe70ab
 
d9ab129
 
efe70ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ab129
efe70ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ab129
efe70ab
 
 
 
 
 
 
 
 
 
 
 
d9ab129
efe70ab
d9ab129
efe70ab
 
 
 
 
 
 
 
d9ab129
efe70ab
 
 
 
 
d9ab129
efe70ab
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf514bf
d9ab129
 
 
 
efe70ab
d9ab129
efe70ab
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65cb9d
d9ab129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import gradio as gr
import sys
import pickle
import json
import gc
import torch
from pathlib import Path
import gdown
import os
import difflib
from datetime import datetime
import random

# Import your existing modules
from utils import *
from options import args
from models import model_factory

class LazyDict:
    def __init__(self, file_path):
        self.file_path = file_path
        self._data = None
        self._loaded = False
    
    def _load_data(self):
        if not self._loaded:
            try:
                with open(self.file_path, "r", encoding="utf-8") as file:
                    self._data = json.load(file)
                self._loaded = True
            except Exception as e:
                print(f"Warning: Could not load {self.file_path}: {str(e)}")
                self._data = {}
                self._loaded = True
    
    def get(self, key, default=None):
        self._load_data()
        return self._data.get(key, default)
    
    def __contains__(self, key):
        self._load_data()
        return key in self._data
    
    def items(self):
        self._load_data()
        return self._data.items()
    
    def keys(self):
        self._load_data()
        return self._data.keys()
    
    def __len__(self):
        self._load_data()
        return len(self._data)

class AnimeRecommendationSystem:
    def __init__(self, checkpoint_path, dataset_path, animes_path, images_path, mal_urls_path, type_seq_path, genres_path):
        self.model = None
        self.dataset = None
        self.checkpoint_path = checkpoint_path
        self.dataset_path = dataset_path
        self.animes_path = animes_path
        
        # Lazy loading ile memory optimization
        self.id_to_anime = LazyDict(animes_path)
        self.id_to_url = LazyDict(images_path)
        self.id_to_mal_url = LazyDict(mal_urls_path)
        self.id_to_type_seq = LazyDict(type_seq_path)
        self.id_to_genres = LazyDict(genres_path)
        
        # Cache için weak reference kullan
        self._cache = {}
        
        self.load_model_and_data()

    def load_model_and_data(self):
        try:
            print("Loading model and data...")
            args.bert_max_len = 128

            # Dataset'i yükle
            dataset_path = Path(self.dataset_path)
            with dataset_path.open('rb') as f:
                self.dataset = pickle.load(f)

            args.num_items = len(self.dataset)

            # Model'i yükle
            self.model = model_factory(args)
            self.load_checkpoint()

            # Garbage collection
            gc.collect()
            print("Model loaded successfully!")

        except Exception as e:
            print(f"Error loading model: {str(e)}")
            raise e

    def load_checkpoint(self):
        try:
            with open(self.checkpoint_path, 'rb') as f:
                checkpoint = torch.load(f, map_location='cpu', weights_only=False)
            self.model.load_state_dict(checkpoint['model_state_dict'])
            self.model.eval()
            
            # Checkpoint'i bellekten temizle
            del checkpoint
            gc.collect()
            
        except Exception as e:
            raise Exception(f"Failed to load checkpoint from {self.checkpoint_path}: {str(e)}")

    def get_anime_genres(self, anime_id):
        genres = self.id_to_genres.get(str(anime_id), [])
        return [genre.title() for genre in genres] if genres else []

    def get_anime_image_url(self, anime_id):
        return self.id_to_url.get(str(anime_id), None)

    def get_anime_mal_url(self, anime_id):
        return self.id_to_mal_url.get(str(anime_id), None)

    

    def _get_type(self, anime_id):
        type_seq_info = self.id_to_type_seq.get(str(anime_id))
        if not type_seq_info or len(type_seq_info) < 2:
            return "Unknown"
        return type_seq_info[0]

    def find_closest_anime(self, input_name):
        """Finds the closest matching anime to the input name"""
        anime_names = {}
        
        # Collect all titles (main + alternative)
        for k, v in self.id_to_anime.items():
            anime_id = int(k)
            if isinstance(v, list) and len(v) > 0:
                # Main title
                main_title = v[0]
                anime_names[main_title.lower().strip()] = (anime_id, main_title)
                # Alternative titles
                if len(v) > 1:
                    for alt_title in v[1:]:
                        if alt_title and isinstance(alt_title, str):
                            alt_title_clean = alt_title.strip()
                            if alt_title_clean:
                                anime_names[alt_title_clean.lower()] = (anime_id, main_title)
            else:
                title = str(v).strip()
                anime_names[title.lower()] = (anime_id, title)

        input_lower = input_name.lower().strip()

        # 1. Exact match
        if input_lower in anime_names:
            return anime_names[input_lower]

        # 2. Substring search
        for anime_name_lower, (anime_id, main_title) in anime_names.items():
            if input_lower in anime_name_lower:
                return (anime_id, main_title)

        # 3. Fuzzy matching
        anime_name_list = list(anime_names.keys())
        close_matches = difflib.get_close_matches(input_lower, anime_name_list, n=1, cutoff=0.6)
        
        if close_matches:
            match = close_matches[0]
            return anime_names[match]

        return None

    def search_animes(self, query):
        """Search animes by query"""
        animes = []
        query_lower = query.lower() if query else ""
        
        count = 0
        for k, v in self.id_to_anime.items():
            if count >= 200:  # Limit for performance
                break
                
            anime_names = v if isinstance(v, list) else [v]
            match_found = False
            
            for name in anime_names:
                if not query or query_lower in name.lower():
                    match_found = True
                    break

            if match_found:
                main_name = anime_names[0] if anime_names else "Unknown"
                animes.append((int(k), main_name))
                count += 1

        animes.sort(key=lambda x: x[1])
        return animes

    def get_recommendations(self, favorite_anime_ids, num_recommendations=20, filters=None):
        try:
            if not favorite_anime_ids:
                return [], [], "Please add some favorite animes first!"

            smap = self.dataset
            inverted_smap = {v: k for k, v in smap.items()}

            converted_ids = []
            for anime_id in favorite_anime_ids:
                if anime_id in smap:
                    converted_ids.append(smap[anime_id])

            if not converted_ids:
                return [], [], "None of the selected animes are in the model vocabulary!"

            # Normal recommendations
            target_len = 128
            padded = converted_ids + [0] * (target_len - len(converted_ids))
            input_tensor = torch.tensor(padded, dtype=torch.long).unsqueeze(0)

            max_predictions = min(75, len(inverted_smap))

            with torch.no_grad():
                logits = self.model(input_tensor)
                last_logits = logits[:, -1, :]
                top_scores, top_indices = torch.topk(last_logits, k=max_predictions, dim=1)

            recommendations = []
            scores = []

            for idx, score in zip(top_indices.numpy()[0], top_scores.detach().numpy()[0]):
                if idx in inverted_smap:
                    anime_id = inverted_smap[idx]

                    if anime_id in favorite_anime_ids:
                        continue

                    if str(anime_id) in self.id_to_anime:
                        # Filter check
                        if filters and not self._should_include_anime(anime_id, filters):
                            continue

                        anime_data = self.id_to_anime.get(str(anime_id))
                        anime_name = anime_data[0] if isinstance(anime_data, list) and len(anime_data) > 0 else str(anime_data)
                        
                        image_url = self.get_anime_image_url(anime_id)
                        mal_url = self.get_anime_mal_url(anime_id)

                        recommendations.append({
                            'id': anime_id,
                            'name': anime_name,
                            'score': float(score),
                            'image_url': image_url,
                            'mal_url': mal_url,
                            'genres': self.get_anime_genres(anime_id),
                            'type': self._get_type(anime_id)
                        })
                        scores.append(float(score))

                        if len(recommendations) >= num_recommendations:
                            break

            # Memory cleanup
            del logits, last_logits, top_scores, top_indices
            gc.collect()

            return recommendations, scores, f"Found {len(recommendations)} recommendations!"

        except Exception as e:
            return [], [], f"Error during prediction: {str(e)}"

    def _should_include_anime(self, anime_id, filters):
        """Check if anime should be included based on filters"""
        if not filters:
            return True
        
        type_seq_info = self.id_to_type_seq.get(str(anime_id))
        if not type_seq_info or len(type_seq_info) < 2:
            return True

        anime_type = type_seq_info[0]
        is_sequel = type_seq_info[1] if len(type_seq_info) > 1 else False
     

        # Sequel filter
        if not filters.get('show_sequels', True) and is_sequel:
            return False

        # Type filters
        if not filters.get('show_movies', True) and anime_type == 'MOVIE':
            return False
        if not filters.get('show_tv', True) and anime_type == 'TV':
            return False
        if not filters.get('show_ova', True) and anime_type in ['ONA', 'OVA', 'SPECIAL']:
            return False

        return True

# Global recommendation system
recommendation_system = None

def initialize_system():
    global recommendation_system
    if recommendation_system is None:
        try:
            args.num_items = 15687

            file_ids = {
                "1C6mdjblhiWGhRgbIk5DP2XCc4ElS9x8p": "pretrained_bert.pth",
                "1J1RmuJE5OjZUO0z1irVb2M-xnvuVvvHR": "animes.json",
                "1xGxUCbCDUnbdnJa6Ab8wgM9cpInpeQnN": "dataset.pkl",
                "1PtB6o_91tNWAb4zN0xj-Kf8SKvVAJp1c": "id_to_url.json",
                "1xVfTB_CmeYEqq6-l_BkQXo-QAUEyBfbW": "anime_to_malurl.json",
                "1zMbL9TpCbODKfVT5ahiaYILlnwBZNJc1": "anime_to_typenseq.json",
                "1LLMRhYyw82GOz3d8SUDZF9YRJdybgAFA": "id_to_genres.json"
            }

            def download_from_gdrive(file_id, output_path):
                url = f"https://drive.google.com/uc?id={file_id}"
                try:
                    print(f"Downloading: {output_path}")
                    gdown.download(url, output_path, quiet=False)
                    print(f"Downloaded: {output_path}")
                    return True
                except Exception as e:
                    print(f"Error downloading {output_path}: {e}")
                    return False

            for file_id, filename in file_ids.items():
                if not os.path.isfile(filename):
                    download_from_gdrive(file_id, filename)

            recommendation_system = AnimeRecommendationSystem(
                "pretrained_bert.pth",
                "dataset.pkl",
                "animes.json",
                "id_to_url.json",
                "anime_to_malurl.json",
                "anime_to_typenseq.json",
                "id_to_genres.json"
            )
            print("Recommendation system initialized successfully!")
            
        except Exception as e:
            print(f"Failed to initialize recommendation system: {e}")
            return f"Error: {str(e)}"
    
    return "System ready!"

def search_and_add_anime(query, favorites_state):
    """Search anime and return search results"""
    if not recommendation_system:
        return "System not initialized", favorites_state, ""
    
    if not query.strip():
        return "Please enter an anime name to search", favorites_state, ""
    
    # Search for anime
    result = recommendation_system.find_closest_anime(query.strip())
    
    if result:
        anime_id, anime_name = result
        
        # Check if already in favorites
        if anime_id in favorites_state:
            return f"'{anime_name}' is already in your favorites", favorites_state, ""
        
        # Add to favorites
        if len(favorites_state) >= 15:
            return "Maximum 15 favorite animes allowed", favorites_state, ""
        
        favorites_state.append(anime_id)
        return f"Added '{anime_name}' to favorites", favorites_state, ""
    else:
        return f"No anime found matching '{query}'", favorites_state, ""

def get_favorites_display(favorites_state):
    """Get display string for favorites"""
    if not favorites_state or not recommendation_system:
        return "No favorites added yet"
    
    display = "Your Favorite Animes:\n"
    for i, anime_id in enumerate(favorites_state, 1):
        anime_data = recommendation_system.id_to_anime.get(str(anime_id))
        if anime_data:
            anime_name = anime_data[0] if isinstance(anime_data, list) else str(anime_data)
            display += f"{i}. {anime_name}\n"
    
    return display

def clear_favorites(favorites_state):
    """Clear all favorites"""
    return "Favorites cleared", [], ""

def get_recommendations_gradio(favorites_state, num_recs, show_sequels, show_movies, show_tv, show_ova):
    """Get recommendations for Gradio interface with HTML formatting for images"""
    if not recommendation_system:
        return "System not initialized"
    
    if not favorites_state:
        return "Please add some favorite animes first!"
    
    # Prepare filters
    filters = {
        'show_sequels': show_sequels,
        'show_movies': show_movies,
        'show_tv': show_tv,
        'show_ova': show_ova
    }
    
    recommendations, scores, message = recommendation_system.get_recommendations(
        favorites_state, 
        num_recommendations=int(num_recs),
        filters=filters
    )
    
    if not recommendations:
        return f"No recommendations found. {message}"
    
    # Format recommendations with HTML and images
    result = f"<div style='padding: 20px;'><h2>🎌 {message}</h2><br>"
    
    for i, rec in enumerate(recommendations, 1):
        # Create HTML card for each recommendation
        result += f"""
        <div style='border: 2px solid #e0e0e0; border-radius: 10px; padding: 15px; margin: 15px 0; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
            <div style='display: flex; align-items: flex-start; gap: 15px;'>
                <div style='flex-shrink: 0;'>
        """
        
        # Add image if available
        if rec.get('image_url'):
            result += f"""
                    <img src='{rec["image_url"]}' alt='{rec["name"]}' 
                         style='width: 120px; height: 160px; object-fit: cover; border-radius: 8px; border: 2px solid #fff; box-shadow: 0 2px 4px rgba(0,0,0,0.2);' 
                         onerror="this.style.display='none';">
            """
        else:
            result += """
                    <div style='width: 120px; height: 160px; background: linear-gradient(45deg, #667eea 0%, #764ba2 100%); border-radius: 8px; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; text-align: center; border: 2px solid #fff; box-shadow: 0 2px 4px rgba(0,0,0,0.2);'>
                        No Image
                    </div>
            """
        
        result += f"""
                </div>
                <div style='flex: 1; min-width: 0;'>
                    <h3 style='margin: 0 0 10px 0; color: #2c3e50; font-size: 1.2em; line-height: 1.3;'>{i}. {rec['name']}</h3>
                    <div style='margin-bottom: 8px;'>
                        <span style='background: #3498db; color: white; padding: 4px 8px; border-radius: 15px; font-size: 0.85em; font-weight: bold;'>
                            Score: {rec['score']:.4f}
                        </span>
                    </div>
                    <div style='margin-bottom: 8px;'>
                        <span style='background: #e74c3c; color: white; padding: 4px 8px; border-radius: 15px; font-size: 0.85em; font-weight: bold;'>
                            Type: {rec.get('type', 'Unknown')}
                        </span>
                    </div>
        """
        
        # Add genres
        if rec['genres']:
            result += f"""
                    <div style='margin-bottom: 10px;'>
                        <strong style='color: #7f8c8d;'>Genres:</strong>
                        <div style='margin-top: 4px;'>
            """
            for genre in rec['genres']:
                result += f"""
                            <span style='background: #95a5a6; color: white; padding: 2px 6px; border-radius: 10px; font-size: 0.8em; margin-right: 4px; margin-bottom: 2px; display: inline-block;'>
                                {genre}
                            </span>
                """
            result += "</div></div>"
        
        # Add MyAnimeList link
        if rec.get('mal_url'):
            result += f"""
                    <div>
                        <a href='{rec["mal_url"]}' target='_blank' 
                           style='background: #2e7d32; color: white; padding: 8px 12px; border-radius: 6px; text-decoration: none; font-weight: bold; font-size: 0.9em; display: inline-block;'>
                            📖 View on MyAnimeList
                        </a>
                    </div>
            """
        
        result += """
                </div>
            </div>
        </div>
        """
    
    result += "</div>"
    return result

def create_interface():
    # Initialize system
    init_status = initialize_system()
    print(init_status)
    
    with gr.Blocks(title="Anime Recommendation System", theme=gr.themes.Soft()) as demo:
        # State for favorites
        favorites_state = gr.State([])
        
        gr.HTML("""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>🎌 Anime Recommendation System</h1>
            <p>Add your favorite animes and get personalized recommendations!</p>
        </div>
        """)
        
        with gr.Tab("Add Favorites"):
            with gr.Row():
                with gr.Column(scale=2):
                    search_input = gr.Textbox(
                        label="Search Anime",
                        placeholder="Enter anime name (e.g., 'Mushoku Tensei', 'Attack on Titan')",
                        lines=1
                    )
                    
                    with gr.Row():
                        add_btn = gr.Button("Add to Favorites", variant="primary")
                        clear_btn = gr.Button("Clear All Favorites", variant="secondary")
                
                with gr.Column(scale=2):
                    status_output = gr.Textbox(label="Status", lines=2)
                    favorites_display = gr.Textbox(
                        label="Your Favorites", 
                        lines=10, 
                        interactive=False,
                        value="No favorites added yet"
                    )
        
        with gr.Tab("Get Recommendations"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Recommendation Settings")
                    
                    num_recs = gr.Slider(
                        minimum=5,
                        maximum=50,
                        value=20,
                        step=5,
                        label="Number of Recommendations"
                    )
                    
                    gr.Markdown("### Filters")
                    show_movies = gr.Checkbox(label="Include Movies", value=True)
                    show_tv = gr.Checkbox(label="Include TV Series", value=True)
                    show_ova = gr.Checkbox(label="Include OVA/ONA/Special", value=True)
                    show_sequels = gr.Checkbox(label="Include Sequels", value=True)
                    
                    
                    recommend_btn = gr.Button("Get Recommendations", variant="primary")
                
                with gr.Column(scale=2):
                    recommendations_output = gr.HTML(
                        label="Recommendations",
                        value="<div style='padding: 20px; text-align: center; color: #7f8c8d;'>Add some favorite animes and click 'Get Recommendations'</div>"
                    )
        
        # Event handlers
        add_btn.click(
            fn=search_and_add_anime,
            inputs=[search_input, favorites_state],
            outputs=[status_output, favorites_state, search_input]
        ).then(
            fn=get_favorites_display,
            inputs=[favorites_state],
            outputs=[favorites_display]
        )
        
        clear_btn.click(
            fn=clear_favorites,
            inputs=[favorites_state],
            outputs=[status_output, favorites_state, search_input]
        ).then(
            fn=get_favorites_display,
            inputs=[favorites_state],
            outputs=[favorites_display]
        )
        
        recommend_btn.click(
            fn=get_recommendations_gradio,
            inputs=[
                favorites_state, num_recs, show_sequels, 
                show_movies, show_tv, show_ova
            ],
            outputs=[recommendations_output]
        )
        
        # Examples
        with gr.Tab("Examples"):
            gr.Markdown("""
            ### How to use:
            1. **Add Favorites**: Search and add your favorite animes
            2. **Set Filters**: Choose what types of anime to include
            3. **Get Recommendations**: Click to get personalized suggestions
            
            ### Example Searches:
            - Mushoku Tensei
            - Attack on Titan  
            - Demon Slayer
            - Your Name
            - Spirited Away
            - One Piece
            - Naruto
            """)
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)