MT_deploy / word /word_helper.py
mintlee's picture
'fix'
1685fcb
raw
history blame
13.4 kB
import os
import docx
from docx import Document
import google.generativeai as genai
import ast
import json
import re
import time
import dotenv
import os
from pymongo import MongoClient
import gridfs
from io import BytesIO
dotenv.load_dotenv(".env")
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
time_spent_sleeping = 0
mismatches = 0
def batch_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
""" Translates multiple text segments in a single API call. """
if not texts:
return texts # Skip if empty
system_prompt = """
Translate the contents of a JSON file from the specified source language to the specified target language while preserving the structure, spaces, and context of the original text.
Instructions:
1. You will be given three inputs: source language, target language, and a JSON file.
2. The JSON file contains a Python dictionary where each key is an integer, and each value is a string.
3. Ensure one-to-one correspondence—each input item must correspond to exactly one output item with the same number of items.
4. The names of people, places, and organizations should be preserved in the translation.
5. Preserve spaces before or after strings. Do not remove, merge, split, or omit any strings.
6. Translate paragraphs and ensure the translation makes sense when text is put together.
7. Translate split words so that the word is not split in the translation.
8. Return a JSON object that is a Python dictionary containing as many items as the original JSON file, with keys and order preserved.
9. The output must be a syntactically correct Python dictionary.
Additional Examples:
**Input 1**:
- Source language: English
- Target language: Vietnamese
- JSON file:
```json
{"0": "My name is ", "1": "Huy", "2": ".", "3": " Today is ", "4": "a ", "5": "good day", "6": ".", "7": ""}
```
**Output 1**:
```json
{"0": "Tên tôi là ", "1": "Huy", "2": ".", "3": " Hôm nay là ", "4": "một ", "5": "ngày đẹp", "6": ".", "7": ""}
```
**Input 2**:
- Source language: English
- Target language: Spanish
- JSON file:
```json
{"0": "The sky is ", "1": "blue", "2": ".", "3": " Water is ", "4": "essential", "5": " for ", "6": "life", "7": "."}
```
**Output 2**:
```json
{"0": "El cielo es ", "1": "azul", "2": ".", "3": " El agua es ", "4": "esencial", "5": " para ", "6": "la vida", "7": "."}
```
**Input 3**:
- Source language: English
- Target language: French
- JSON file:
```json
{"0": "The quick brown ", "1": "fox ", "2": "jumps ", "3": "over ", "4": "the ", "5": "lazy ", "6": "dog", "7": "."}
```
**Output 3**:
```json
{"0": "Le renard brun ", "1": "rapide ", "2": "saute ", "3": "par-dessus ", "4": "le ", "5": "chien ", "6": "paresseux", "7": "."}
```
Perform the translation and return the result as specified above. Do not include any additional text other than the translated JSON object.
"""
json_data = json.dumps({i: t for i, t in enumerate(texts)})
user_prompt = f"Source language: {source_lang}. Target language: {target_lang}. JSON file: {json_data}"
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(contents = system_prompt.strip() + "\n" + user_prompt.strip(), generation_config={
'temperature': 1, # Adjust temperature for desired creativity
'top_p': 1,
'top_k': 1,})
# response_dict = ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\""))
# print(len(texts), len(list(response_dict.values())))
# return list(response_dict.values())
return response
def response_to_dict(response):
return list(ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\"")).values())
def brute_force_fix(batch, translated_batch):
if len(batch) > len(translated_batch):
translated_batch += [""] * (len(batch) - len(translated_batch))
elif len(batch) < len(translated_batch):
translated_batch = translated_batch[:len(batch)]
return translated_batch
def batch_translate_loop(batch, source_lang, target_lang):
if not batch:
return batch
translated_batch_response = batch_translate(batch, source_lang, target_lang)
try:
translated_batch = response_to_dict(translated_batch_response)
assert(len(translated_batch) == len(batch))
except:
for i in range(10):
print(f'I am ChatGPT and I am retarded, retrying translation time {i}:')
try:
translated_batch_response = batch_translate(batch, source_lang, target_lang)
translated_batch = response_to_dict(translated_batch_response)
assert(len(translated_batch) == len(batch))
break
except:
pass
try:
assert(isinstance(response_to_dict(translated_batch_response), list))
except:
raise ValueError("The translated batch is not a list.")
if len(translated_batch) != len(batch):
print("Length mismatch after translation. Brute Force Fixing...")
translated_batch = brute_force_fix(batch, translated_batch)
global mismatches
mismatches += 1
print(len(batch), len(translated_batch))
return translated_batch
def get_batches(texts, limit = 1000):
batches = []
batch = []
word_count = 0
for string in texts:
if len(string.split()) + word_count >= limit:
batches.append(batch)
batch = []
word_count = 0
batch.append(string)
word_count += len(string)
batches.append(batch)
return batches
def full_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
full_translated_texts = []
batches = get_batches(texts, limit = 1000)
word_count = 0
global time_spent_sleeping
for batch in batches:
translated_batch = batch_translate_loop(batch, source_lang, target_lang)
full_translated_texts += translated_batch
time.sleep(3)
time_spent_sleeping += 3
return full_translated_texts
def merge_runs(runs):
""" Merges adjacent runs with the same style. """
merged_runs = []
for run in runs:
if (merged_runs and isinstance(run, docx.text.run.Run) and isinstance(merged_runs[-1], docx.text.run.Run) and
run.style == merged_runs[-1].style and
merged_runs[-1].bold == run.bold and
merged_runs[-1].italic == run.italic and
merged_runs[-1].underline == run.underline and
merged_runs[-1].font.size == run.font.size and
merged_runs[-1].font.color.rgb == run.font.color.rgb and
merged_runs[-1].font.name == run.font.name):
merged_runs[-1].text += run.text
else:
merged_runs.append(run)
return merged_runs
NS_W = "{http://schemas.openxmlformats.org/wordprocessingml/2006/main}"
def translate_header_footer(doc, source_lang, target_lang):
head_foot = []
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
head_foot.append(run.text)
for footer in section.footer.paragraphs:
for run in footer.runs:
head_foot.append(run.text)
translated_head_foot = batch_translate_loop(head_foot, source_lang, target_lang)
i = 0
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
run.text = translated_head_foot[i]
i += 1
for footer in section.footer.paragraphs:
for run in footer.runs:
run.text = translated_head_foot[i]
i += 1
def get_text_elements_para(doc):
para_texts = []
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for part in parts:
if re.match(emoji_pattern, part):
continue
if len(part.strip()) != 0:
para_texts.append(part)
return para_texts
def get_text_elements_table(doc):
table_texts = []
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
table_texts += get_text_elements_para(cell)
return table_texts
def translate_paragraphs(doc, translated_texts, i = 0):
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for j in range(len(parts)):
if re.match(emoji_pattern, parts[j]):
continue
if len(parts[j].strip()) != 0:
translated_text = translated_texts[i]
i += 1
parts[j] = translated_text
element.text = "".join(parts)
return doc, i
def translate_tables(doc, translated_texts):
i = 0
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
cell, i = translate_paragraphs(cell, translated_texts, i)
return doc
def is_same_formatting(text1, text2):
"""
Check if two texts have the same formatting.
"""
return (text1.bold == text2.bold \
and text1.italic == text2.italic \
and text1.underline == text2.underline \
and text1.font.size == text2.font.size \
and text1.font.color.rgb == text2.font.color.rgb \
and text1.font.name == text2.font.name)
def merge_elements(doc):
for para in doc.paragraphs:
current_run = []
for element in para.iter_inner_content():
if isinstance(element, docx.text.run.Run):
if current_run == []:
current_run = [element]
elif is_same_formatting(current_run[0], element):
current_run[0].text += element.text
element.text = ""
else:
current_run = [element]
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
for para in cell.paragraphs:
current_run = []
for element in para.iter_inner_content():
if isinstance(element, docx.text.run.Run):
if current_run == []:
current_run = [element]
elif is_same_formatting(current_run[0], element):
current_run[0].text += element.text
element.text = ""
else:
current_run = [element]
return doc
def translate_docx(file_id, source_lang="English", target_lang="Vietnamese", file_name=''):
"""Translates a Word document and saves the output to MongoDB."""
client = MongoClient(os.getenv("MONGODB_URI"))
db = client["word"]
fs_input = gridfs.GridFS(db, collection="root_file")
fs_output = gridfs.GridFS(db, collection="final_file")
# Lấy file gốc từ MongoDB
input_file = fs_input.get(file_id)
doc = Document(BytesIO(input_file.read()))
# Dịch nội dung
doc = merge_elements(doc)
print('Translating paragraphs.')
para_texts = get_text_elements_para(doc)
translated_para = full_translate(para_texts, source_lang=source_lang, target_lang=target_lang)
print('Done translating paragraphs.')
print('Translating tables.')
table_texts = get_text_elements_table(doc)
translated_tables = full_translate(table_texts, source_lang=source_lang, target_lang=target_lang)
print('Done translating tables.')
print('Inserting paragraphs.')
doc, _ = translate_paragraphs(doc, translated_para)
print('Inserting tables.')
doc = translate_tables(doc, translated_tables)
translate_header_footer(doc, source_lang, target_lang)
print('Done translating headers & footers.')
# Lưu tài liệu đã dịch vào MongoDB
output_stream = BytesIO()
doc.save(output_stream)
output_stream.seek(0)
translated_file_id = fs_output.put(output_stream, filename=file_name)
client.close()
print(f"Translation complete! Saved to MongoDB with id: {translated_file_id}")
return translated_file_id