MT_deploy / word /word_helper.py
mintlee's picture
add upgrade model version
efbadb1
import os
import docx
from docx import Document
import google.generativeai as genai
import ast
import json
import re
import time
import dotenv
import os
from io import BytesIO
dotenv.load_dotenv(".env")
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
time_spent_sleeping = 0
mismatches = 0
def batch_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
""" Translates multiple text segments in a single API call. """
if not texts:
return texts # Skip if empty
system_prompt = f"""Translate the string values within the following JSON object .
Follow these instructions carefully:
1. Analyze the entire JSON object to understand the context.
2. Translate *only* the string values.
3. Keep the original keys *exactly* as they are.
4. Do *not* translate non-string values (like hex color codes, numbers, or potentially proper nouns like 'CALISTOGA', 'DM SANS', 'Pexels', 'Pixabay' unless they have a common translation). Use your best judgment for proper nouns.
5. Preserve the original JSON structure perfectly.
6. Your output *must* be only the translated JSON object, without any introductory text, explanations, or markdown formatting like ```json ... ```.
"""
json_data = json.dumps({i: t for i, t in enumerate(texts)})
user_prompt = f"Target language: {target_lang}. JSON file: {json_data}"
model = genai.GenerativeModel(os.getenv("MODEL_VERSION"))
response = model.generate_content(contents = system_prompt.strip() + "\n" + user_prompt.strip(), generation_config={
'temperature': 0.3, # Adjust temperature for desired creativity
'top_p': 1,
'top_k': 1,})
# response_dict = ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\""))
# print(len(texts), len(list(response_dict.values())))
# return list(response_dict.values())
return response
def response_to_dict(response):
return list(ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\"")).values())
def brute_force_fix(batch, translated_batch):
if len(batch) > len(translated_batch):
translated_batch += [""] * (len(batch) - len(translated_batch))
elif len(batch) < len(translated_batch):
translated_batch = translated_batch[:len(batch)]
return translated_batch
def batch_translate_loop(batch, source_lang, target_lang):
if not batch:
return batch
translated_batch_response = batch_translate(batch, source_lang, target_lang)
try:
translated_batch = response_to_dict(translated_batch_response)
assert(len(translated_batch) == len(batch))
except:
for i in range(10):
print(f'I am ChatGPT and I am retarded, retrying translation time {i}:')
try:
translated_batch_response = batch_translate(batch, source_lang, target_lang)
translated_batch = response_to_dict(translated_batch_response)
assert(len(translated_batch) == len(batch))
break
except:
pass
try:
assert(isinstance(response_to_dict(translated_batch_response), list))
except:
raise ValueError("The translated batch is not a list.")
if len(translated_batch) != len(batch):
print("Length mismatch after translation. Brute Force Fixing...")
translated_batch = brute_force_fix(batch, translated_batch)
global mismatches
mismatches += 1
print(len(batch), len(translated_batch))
return translated_batch
def get_batches(texts, limit = 2000):
batches = []
batch = []
word_count = 0
for string in texts:
if len(string.split()) + word_count >= limit:
batches.append(batch)
batch = []
word_count = 0
batch.append(string)
word_count += len(string)
batches.append(batch)
return batches
def full_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
full_translated_texts = []
batches = get_batches(texts, limit = 2000)
word_count = 0
global time_spent_sleeping
for batch in batches:
translated_batch = batch_translate_loop(batch, source_lang, target_lang)
full_translated_texts += translated_batch
time.sleep(3)
time_spent_sleeping += 3
return full_translated_texts
def merge_runs(runs):
""" Merges adjacent runs with the same style. """
merged_runs = []
for run in runs:
if (merged_runs and isinstance(run, docx.text.run.Run) and isinstance(merged_runs[-1], docx.text.run.Run) and
run.style == merged_runs[-1].style and
merged_runs[-1].bold == run.bold and
merged_runs[-1].italic == run.italic and
merged_runs[-1].underline == run.underline and
merged_runs[-1].font.size == run.font.size and
merged_runs[-1].font.color.rgb == run.font.color.rgb and
merged_runs[-1].font.name == run.font.name):
merged_runs[-1].text += run.text
else:
merged_runs.append(run)
return merged_runs
NS_W = "{http://schemas.openxmlformats.org/wordprocessingml/2006/main}"
def translate_header_footer(doc, source_lang, target_lang):
head_foot = []
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
head_foot.append(run.text)
for footer in section.footer.paragraphs:
for run in footer.runs:
head_foot.append(run.text)
translated_head_foot = batch_translate_loop(head_foot, source_lang, target_lang)
i = 0
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
run.text = translated_head_foot[i]
i += 1
for footer in section.footer.paragraphs:
for run in footer.runs:
run.text = translated_head_foot[i]
i += 1
def get_text_elements_para(doc):
para_texts = []
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for part in parts:
if re.match(emoji_pattern, part):
continue
if len(part.strip()) != 0:
para_texts.append(part)
return para_texts
def get_text_elements_table(doc):
table_texts = []
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
table_texts += get_text_elements_para(cell)
return table_texts
def translate_paragraphs(doc, translated_texts, i = 0):
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for j in range(len(parts)):
if re.match(emoji_pattern, parts[j]):
continue
if len(parts[j].strip()) != 0:
translated_text = translated_texts[i]
i += 1
parts[j] = translated_text
element.text = "".join(parts)
return doc, i
def translate_tables(doc, translated_texts):
i = 0
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
cell, i = translate_paragraphs(cell, translated_texts, i)
return doc
def is_same_formatting(text1, text2):
"""
Check if two texts have the same formatting.
"""
return (text1.bold == text2.bold \
and text1.italic == text2.italic \
and text1.underline == text2.underline \
and text1.font.size == text2.font.size \
and text1.font.color.rgb == text2.font.color.rgb \
and text1.font.name == text2.font.name)
def merge_elements(doc):
for para in doc.paragraphs:
current_run = []
for element in para.iter_inner_content():
if isinstance(element, docx.text.run.Run):
if current_run == []:
current_run = [element]
elif is_same_formatting(current_run[0], element):
current_run[0].text += element.text
element.text = ""
else:
current_run = [element]
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
for para in cell.paragraphs:
current_run = []
for element in para.iter_inner_content():
if isinstance(element, docx.text.run.Run):
if current_run == []:
current_run = [element]
elif is_same_formatting(current_run[0], element):
current_run[0].text += element.text
element.text = ""
else:
current_run = [element]
return doc
def translate_docx(uploaded_file, file_name, source_lang="English", target_lang="Vietnamese"):
"""
Translates a Word document passed as a Streamlit UploadedFile and returns a BytesIO object.
"""
doc = Document(uploaded_file)
doc = merge_elements(doc)
print('Translating paragraphs.')
para_texts = get_text_elements_para(doc)
translated_para = full_translate(para_texts, source_lang=source_lang, target_lang=target_lang)
print('Done translating paragraphs.')
print('Translating tables.')
table_texts = get_text_elements_table(doc)
translated_tables = full_translate(table_texts, source_lang=source_lang, target_lang=target_lang)
print('Done translating tables.')
print('Inserting paragraphs.')
doc, _ = translate_paragraphs(doc, translated_para)
print('Inserting tables.')
doc = translate_tables(doc, translated_tables)
translate_header_footer(doc, source_lang, target_lang)
print('Done translating headers & footers.')
output_stream = BytesIO()
doc.save(output_stream)
output_stream.seek(0)
return output_stream, file_name