File size: 10,927 Bytes
70517a9
0e9ff78
 
6f8625d
0e9ff78
 
e53f591
ce94f1c
e53f591
ce94f1c
70517a9
 
e53f591
0e9ff78
ce94f1c
 
 
 
 
 
70517a9
 
 
 
 
 
dee7654
 
 
 
 
 
 
 
70517a9
 
d300944
70517a9
efbadb1
70517a9
dee7654
70517a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcb5e5
 
70517a9
 
 
 
 
 
 
 
 
571ba8a
 
70517a9
571ba8a
70517a9
 
bdcb5e5
 
571ba8a
70517a9
bdcb5e5
 
70517a9
 
 
 
 
 
 
 
5204efb
bdcb5e5
e53f591
 
 
 
bdcb5e5
 
e53f591
 
 
70517a9
bdcb5e5
 
571ba8a
bdcb5e5
 
 
 
5204efb
bdcb5e5
 
 
 
 
 
 
 
 
 
e53f591
0e9ff78
 
 
 
 
e53f591
0e9ff78
 
 
 
 
 
e53f591
0e9ff78
 
 
 
 
 
70517a9
0e9ff78
 
 
 
 
 
 
 
bdcb5e5
0e9ff78
 
 
 
 
 
 
 
 
 
70517a9
 
e53f591
 
 
 
 
 
 
 
 
 
 
 
70517a9
 
 
e53f591
 
 
 
 
 
 
 
 
0e9ff78
e53f591
 
 
 
 
 
 
 
 
 
 
70517a9
 
 
 
e53f591
 
 
 
 
 
 
 
 
 
 
70517a9
 
 
 
 
 
 
 
 
 
0e9ff78
70517a9
 
 
 
 
 
 
 
 
 
 
 
1685fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
70517a9
 
ff93898
 
 
 
70517a9
ff93898
70517a9
 
ce94f1c
70517a9
e53f591
ce94f1c
 
70517a9
 
e53f591
ce94f1c
70517a9
 
ce94f1c
e53f591
ce94f1c
70517a9
e53f591
70517a9
 
 
 
ce94f1c
 
 
 
ff93898
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import docx
from docx import Document
import google.generativeai as genai
import ast
import json
import re
import time
import dotenv
import os
from io import BytesIO

dotenv.load_dotenv(".env")

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))



time_spent_sleeping = 0
mismatches = 0

def batch_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
    """ Translates multiple text segments in a single API call. """
    if not texts:
        return texts  # Skip if empty
    
    system_prompt = f"""Translate the string values within the following JSON object .
        Follow these instructions carefully:
        1.  Analyze the entire JSON object to understand the context.
        2.  Translate *only* the string values.
        3.  Keep the original keys *exactly* as they are.
        4.  Do *not* translate non-string values (like hex color codes, numbers, or potentially proper nouns like 'CALISTOGA', 'DM SANS', 'Pexels', 'Pixabay' unless they have a common translation). Use your best judgment for proper nouns.
        5.  Preserve the original JSON structure perfectly.
        6.  Your output *must* be only the translated JSON object, without any introductory text, explanations, or markdown formatting like ```json ... ```.
    """
    json_data = json.dumps({i: t for i, t in enumerate(texts)})
    user_prompt = f"Target language: {target_lang}. JSON file: {json_data}" 
  
    model = genai.GenerativeModel(os.getenv("MODEL_VERSION"))
    response = model.generate_content(contents = system_prompt.strip() + "\n" + user_prompt.strip(), generation_config={
            'temperature': 0.3,  # Adjust temperature for desired creativity
            'top_p': 1,
            'top_k': 1,})
    # response_dict = ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\""))
    # print(len(texts), len(list(response_dict.values())))
    # return list(response_dict.values())

    return response

def response_to_dict(response):
    return list(ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\"")).values())

def brute_force_fix(batch, translated_batch):
    if len(batch) > len(translated_batch):
        translated_batch += [""] * (len(batch) - len(translated_batch))
    elif len(batch) < len(translated_batch):
        translated_batch = translated_batch[:len(batch)]
    return translated_batch

def batch_translate_loop(batch, source_lang, target_lang):
    if not batch:
        return batch
    translated_batch_response = batch_translate(batch, source_lang, target_lang)
    try:
        translated_batch = response_to_dict(translated_batch_response)
        assert(len(translated_batch) == len(batch))

    except:
        for i in range(10):
            print(f'I am ChatGPT and I am retarded, retrying translation time {i}:')
            try: 
                translated_batch_response = batch_translate(batch, source_lang, target_lang)
                translated_batch = response_to_dict(translated_batch_response)
                assert(len(translated_batch) == len(batch))
                break   
            except:
                pass
    
    try:
        assert(isinstance(response_to_dict(translated_batch_response), list))
    except:
        raise ValueError("The translated batch is not a list.")
    
    if len(translated_batch) != len(batch):
        print("Length mismatch after translation. Brute Force Fixing...")
        translated_batch = brute_force_fix(batch, translated_batch)
        global mismatches
        mismatches += 1
    print(len(batch), len(translated_batch))
    return translated_batch

def get_batches(texts, limit = 2000):
    batches = []
    batch = []
    word_count = 0

    for string in texts:
        if len(string.split()) + word_count >= limit:
            batches.append(batch)
            batch = []
            word_count = 0
        batch.append(string)
        word_count += len(string)

    batches.append(batch)    
    
    return batches

def full_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
    full_translated_texts = []
    batches = get_batches(texts, limit = 2000)
    word_count = 0
    global time_spent_sleeping

    for batch in batches:
        translated_batch = batch_translate_loop(batch, source_lang, target_lang)
        full_translated_texts += translated_batch
            
        time.sleep(3)
        time_spent_sleeping += 3
        
    return full_translated_texts

def merge_runs(runs):
    """ Merges adjacent runs with the same style. """
    merged_runs = []
    for run in runs:
        if (merged_runs and isinstance(run, docx.text.run.Run) and isinstance(merged_runs[-1], docx.text.run.Run) and 
            run.style == merged_runs[-1].style and 
            merged_runs[-1].bold == run.bold and
            merged_runs[-1].italic == run.italic and
            merged_runs[-1].underline == run.underline and 
            merged_runs[-1].font.size == run.font.size and
            merged_runs[-1].font.color.rgb == run.font.color.rgb and
            merged_runs[-1].font.name == run.font.name):
                merged_runs[-1].text += run.text
        else:
                merged_runs.append(run)
    return merged_runs

NS_W = "{http://schemas.openxmlformats.org/wordprocessingml/2006/main}"
def translate_header_footer(doc, source_lang, target_lang):
    head_foot = []
    for section in doc.sections:
        for header in section.header.paragraphs:
            for run in header.runs:
                head_foot.append(run.text) 
        for footer in section.footer.paragraphs:
            for run in footer.runs:
                head_foot.append(run.text)  
    translated_head_foot = batch_translate_loop(head_foot, source_lang, target_lang)

    i = 0
    for section in doc.sections:
        for header in section.header.paragraphs:
            for run in header.runs:
                run.text = translated_head_foot[i]
                i += 1
        for footer in section.footer.paragraphs:
            for run in footer.runs:
                run.text = translated_head_foot[i]
                i += 1 

def get_text_elements_para(doc):
    para_texts = []
    for para in doc.paragraphs:
        for element in para._element.iter():
            if element.tag.endswith('t'):
                if element.text:
                    emoji_pattern = r'[\U00010000-\U0010FFFF]'    
                    # Split the text but keep emojis as separate elements
                    parts = re.split(f'({emoji_pattern})', element.text)
                    for part in parts:
                        if re.match(emoji_pattern, part):
                            continue
                        if len(part.strip()) != 0:
                            para_texts.append(part)

    return para_texts

def get_text_elements_table(doc):
    table_texts = []
    for table in doc.tables:
        for row in table.rows:
            for cell in row.cells:
                table_texts += get_text_elements_para(cell)
    return table_texts

def translate_paragraphs(doc, translated_texts, i = 0):
    for para in doc.paragraphs:
        for element in para._element.iter():
            if element.tag.endswith('t'):
                if element.text:
                    emoji_pattern = r'[\U00010000-\U0010FFFF]'    
                    # Split the text but keep emojis as separate elements
                    parts = re.split(f'({emoji_pattern})', element.text)
                    for j in range(len(parts)):
                        if re.match(emoji_pattern, parts[j]):
                            continue
                        if len(parts[j].strip()) != 0: 
                            translated_text = translated_texts[i]
                            i += 1
                            parts[j] = translated_text
                    element.text = "".join(parts)                        
    return doc, i

def translate_tables(doc, translated_texts):
    i = 0
    for table in doc.tables:
        for row in table.rows:
            for cell in row.cells:
                cell, i = translate_paragraphs(cell, translated_texts, i)
    return doc

def is_same_formatting(text1, text2):
    """
    Check if two texts have the same formatting.
    """
    return (text1.bold == text2.bold \
            and text1.italic == text2.italic \
            and text1.underline == text2.underline \
            and text1.font.size == text2.font.size \
            and text1.font.color.rgb == text2.font.color.rgb \
            and text1.font.name == text2.font.name)
    
def merge_elements(doc):
    for para in doc.paragraphs:
        current_run = []
        for element in para.iter_inner_content():
            if isinstance(element, docx.text.run.Run):
                if current_run  == []:
                    current_run = [element]
                elif is_same_formatting(current_run[0], element):
                    current_run[0].text += element.text
                    element.text = ""
                else:
                    current_run = [element]
    for table in doc.tables:
        for row in table.rows:
            for cell in row.cells:
                for para in cell.paragraphs:
                    current_run = []
                    for element in para.iter_inner_content():
                        if isinstance(element, docx.text.run.Run):
                            if current_run  == []:
                                current_run = [element]
                            elif is_same_formatting(current_run[0], element):
                                current_run[0].text += element.text
                                element.text = ""
                            else:
                                current_run = [element]
    return doc

def translate_docx(uploaded_file, file_name, source_lang="English", target_lang="Vietnamese"):
    """
    Translates a Word document passed as a Streamlit UploadedFile and returns a BytesIO object.
    """

    doc = Document(uploaded_file)

    doc = merge_elements(doc)

    print('Translating paragraphs.')
    para_texts = get_text_elements_para(doc)
    translated_para = full_translate(para_texts, source_lang=source_lang, target_lang=target_lang)
    print('Done translating paragraphs.')

    print('Translating tables.')
    table_texts = get_text_elements_table(doc)
    translated_tables = full_translate(table_texts, source_lang=source_lang, target_lang=target_lang)
    print('Done translating tables.')

    print('Inserting paragraphs.')
    doc, _ = translate_paragraphs(doc, translated_para)

    print('Inserting tables.')
    doc = translate_tables(doc, translated_tables)

    translate_header_footer(doc, source_lang, target_lang)
    print('Done translating headers & footers.')

    output_stream = BytesIO()
    doc.save(output_stream)
    output_stream.seek(0)

    return output_stream, file_name