viettelpay-chatbot / src /processor /contextual_word_processor.py
minhan6559's picture
Upload 73 files
60d1d13 verified
raw
history blame
15.8 kB
"""
Contextual Word Document Processor for ViettelPay Knowledge Base
This processor implements Anthropic's Contextual Retrieval technique:
- Extracts content from Word documents including text sections and tables
- Uses LLM to generate contextual information for each chunk
- Enhances chunks with context before embedding
"""
import re
from typing import List, Dict, Any, Optional
from pathlib import Path
from docx import Document as DocxDocument
from docx.table import Table
from docx.text.paragraph import Paragraph
from langchain.schema import Document
from markitdown import MarkItDown
class ContextualWordProcessor:
"""
Contextual processor for Word documents using LLM enhancement
"""
def __init__(self, llm_client=None):
"""
Initialize the processor with an LLM client for contextual enhancement
Args:
llm_client: OpenAI client instance for generating context
"""
self.llm_client = llm_client
self.md_converter = MarkItDown()
self.current_section_hierarchy = []
self.section_counter = 0
# Vietnamese contextual prompt template
self.contextual_prompt_template = """<document>
{WHOLE_DOCUMENT}
</document>
Đây là đoạn văn bản cần được đặt trong ngữ cảnh của toàn bộ tài liệu:
<chunk>
{CHUNK_CONTENT}
</chunk>
Hãy cung cấp ngữ cảnh và tóm tắt ngắn gọn để giúp định vị đoạn văn này trong toàn bộ tài liệu ViettelPay Pro, nhằm cải thiện khả năng tìm kiếm thông tin. Chỉ trả lời bằng ngữ cảnh ngắn gọn, không cần giải thích thêm."""
def process_word_document(self, file_path: str) -> List[Document]:
"""
Main method to process a Word document into contextualized LangChain Documents
Args:
file_path: Path to the Word document
Returns:
List of contextualized LangChain Document objects
"""
print(
f"[INFO] Processing Word document with contextual enhancement: {file_path}"
)
if not Path(file_path).exists():
raise FileNotFoundError(f"Word document not found: {file_path}")
# Get the full document content using markitdown for context generation
try:
result = self.md_converter.convert(file_path)
whole_document_content = result.text_content
print(
f"[INFO] Extracted full document content: {len(whole_document_content)} characters"
)
except Exception as e:
print(f"[WARNING] Could not extract full document with markitdown: {e}")
whole_document_content = ""
# Load the document for structured processing
doc = DocxDocument(file_path)
# Extract all content with structure
all_documents = []
current_section_content = []
current_section_title = "Introduction"
current_section_level = 0
for element in doc.element.body:
# Check if it's a paragraph
if element.tag.endswith("}p"):
paragraph = Paragraph(element, doc)
# Check if it's a heading
heading_info = self._extract_heading_info(paragraph)
if heading_info:
# Save previous section if it has content
if current_section_content:
section_doc = self._create_contextual_section_document(
current_section_title,
current_section_content,
current_section_level,
file_path,
whole_document_content,
)
if section_doc:
all_documents.append(section_doc)
# Start new section
current_section_title = heading_info["title"]
current_section_level = heading_info["level"]
current_section_content = []
self._update_section_hierarchy(
heading_info["level"], current_section_title
)
else:
# Regular paragraph content
paragraph_text = paragraph.text.strip()
if paragraph_text:
current_section_content.append(paragraph_text)
# Check if it's a table
elif element.tag.endswith("}tbl"):
table = Table(element, doc)
table_documents = self._process_contextual_table(
table, current_section_title, file_path, whole_document_content
)
all_documents.extend(table_documents)
# Don't forget the last section
if current_section_content:
section_doc = self._create_contextual_section_document(
current_section_title,
current_section_content,
current_section_level,
file_path,
whole_document_content,
)
if section_doc:
all_documents.append(section_doc)
print(
f"[SUCCESS] Extracted {len(all_documents)} contextualized documents from Word file"
)
return all_documents
def _generate_context(self, chunk_content: str, whole_document: str) -> str:
"""
Generate contextual information for a chunk using LLM
Args:
chunk_content: The text chunk to contextualize
whole_document: The full document content for context
Returns:
Generated context string
"""
if not self.llm_client or not whole_document:
return ""
try:
# Prepare the prompt
prompt = self.contextual_prompt_template.format(
WHOLE_DOCUMENT=whole_document, CHUNK_CONTENT=chunk_content
)
# Call OpenAI API
response = self.llm_client.chat.completions.create(
model="gpt-4o-mini", # Cost-effective model for context generation
messages=[{"role": "user", "content": prompt}],
max_tokens=200,
temperature=0.1, # Low temperature for consistent context generation
)
context = response.choices[0].message.content.strip()
return context
except Exception as e:
print(f"[WARNING] Failed to generate context: {e}")
return ""
def _extract_heading_info(self, paragraph: Paragraph) -> Optional[Dict[str, Any]]:
"""
Extract heading information from a paragraph
"""
if paragraph.style.name.startswith("Heading"):
try:
level = int(paragraph.style.name.split()[-1])
title = paragraph.text.strip()
return {"title": title, "level": level}
except (ValueError, IndexError):
pass
# Also check for manual heading patterns (like "# Title")
text = paragraph.text.strip()
if text.startswith("#"):
level = len(text) - len(text.lstrip("#"))
title = text.lstrip("#").strip()
return {"title": title, "level": level}
# Check for numbered sections like "1. Title", "1.1. Title"
section_pattern = r"^(\d+\.(?:\d+\.)*)\s*(.+)$"
match = re.match(section_pattern, text)
if match:
section_num = match.group(1)
title = match.group(2)
level = section_num.count(".")
return {"title": title, "level": level}
return None
def _update_section_hierarchy(self, level: int, title: str):
"""Update the current section hierarchy"""
# Trim hierarchy to current level
self.current_section_hierarchy = self.current_section_hierarchy[: level - 1]
# Add current section
if len(self.current_section_hierarchy) < level:
self.current_section_hierarchy.extend(
[""] * (level - len(self.current_section_hierarchy))
)
if level <= len(self.current_section_hierarchy):
self.current_section_hierarchy[level - 1] = title
def _create_contextual_section_document(
self,
title: str,
content: List[str],
level: int,
source_file: str,
whole_document: str,
) -> Optional[Document]:
"""
Create a contextualized Document object from section content
"""
if not content:
return None
# Combine all paragraphs in the section
original_content = f"# {title}\n\n" + "\n\n".join(content)
# Generate contextual information
context = self._generate_context(original_content, whole_document)
# Combine context with original content
if context:
contextualized_content = f"{context}\n\n{original_content}"
print(
f"[INFO] Generated context for section '{title}': {len(context)} chars"
)
else:
contextualized_content = original_content
# Create metadata
metadata = {
"doc_type": "section",
"section_title": title,
"section_level": level,
"section_hierarchy": " > ".join(
filter(None, self.current_section_hierarchy)
),
"source_file": Path(source_file).name,
"content_type": "text_section",
"section_id": f"section_{self.section_counter}",
"has_context": bool(context),
"original_content": original_content,
}
self.section_counter += 1
return Document(page_content=contextualized_content, metadata=metadata)
def _process_contextual_table(
self, table: Table, current_section: str, source_file: str, whole_document: str
) -> List[Document]:
"""
Process a table into multiple contextualized Document objects (one per row)
"""
documents = []
if not table.rows:
return documents
# Extract headers from first row
headers = []
first_row = table.rows[0]
for cell in first_row.cells:
headers.append(cell.text.strip())
# Process each data row (skip header row)
for row_idx, row in enumerate(table.rows[1:], 1):
row_content = self._process_table_row(row, headers, row_idx)
if row_content:
# Generate contextual information for the table row
context = self._generate_context(row_content, whole_document)
# Combine context with original content
if context:
contextualized_content = f"{context}\n\n{row_content}"
print(
f"[INFO] Generated context for table row {row_idx}: {len(context)} chars"
)
else:
contextualized_content = row_content
# Create metadata for the table row
metadata = {
"doc_type": "table_row",
"section_title": current_section,
"section_hierarchy": " > ".join(
filter(None, self.current_section_hierarchy)
),
"source_file": Path(source_file).name,
"content_type": "table_data",
"table_headers": " | ".join(headers),
"row_number": row_idx,
"table_id": f"table_{current_section}_{row_idx}",
"has_context": bool(context),
"original_content": row_content,
}
doc = Document(page_content=contextualized_content, metadata=metadata)
documents.append(doc)
return documents
def _process_table_row(
self, row, headers: List[str], row_idx: int
) -> Optional[str]:
"""
Process a single table row into content string
"""
row_data = []
for cell in row.cells:
cell_text = cell.text.strip()
row_data.append(cell_text)
# Skip empty rows
if not any(row_data):
return None
# Create structured content from the row
content_parts = []
for header, cell_value in zip(headers, row_data):
if cell_value: # Only include non-empty cells
content_parts.append(f"{header}: {cell_value}")
if not content_parts:
return None
# Create the final content
row_content = f"Bảng dữ liệu - Hàng {row_idx}:\n" + "\n".join(content_parts)
return row_content
def get_document_stats(self, documents: List[Document]) -> Dict[str, Any]:
"""
Get statistics about the processed documents
"""
stats = {
"total_documents": len(documents),
"sections": 0,
"table_rows": 0,
"doc_types": {},
"sections_by_level": {},
"contextualized_docs": 0,
"non_contextualized_docs": 0,
}
for doc in documents:
doc_type = doc.metadata.get("doc_type", "unknown")
stats["doc_types"][doc_type] = stats["doc_types"].get(doc_type, 0) + 1
# Count contextualized vs non-contextualized
if doc.metadata.get("has_context", False):
stats["contextualized_docs"] += 1
else:
stats["non_contextualized_docs"] += 1
if doc_type == "section":
stats["sections"] += 1
level = doc.metadata.get("section_level", 0)
stats["sections_by_level"][level] = (
stats["sections_by_level"].get(level, 0) + 1
)
elif doc_type == "table_row":
stats["table_rows"] += 1
return stats
# Example usage and testing
if __name__ == "__main__":
# Test the processor (would need OpenAI client in practice)
processor = ContextualWordProcessor()
# Example file path (adjust as needed)
test_file = "viettelpay_docs/raw/Nghiệp vụ.docx"
try:
documents = processor.process_word_document(test_file)
# Show some example documents
print(f"\n[INFO] First 3 documents:")
for i, doc in enumerate(documents[:3]):
print(f"\nDocument {i+1}:")
print(f"Type: {doc.metadata.get('doc_type')}")
print(f"Section: {doc.metadata.get('section_title')}")
print(f"Has Context: {doc.metadata.get('has_context')}")
print(f"Content preview: {doc.page_content[:200]}...")
# Show stats
stats = processor.get_document_stats(documents)
print(f"\n[INFO] Processing statistics:")
for key, value in stats.items():
print(f" {key}: {value}")
except FileNotFoundError:
print("[ERROR] Test file not found. Please adjust the file path.")
except Exception as e:
print(f"[ERROR] Error processing document: {e}")