File size: 15,758 Bytes
60d1d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""

Contextual Word Document Processor for ViettelPay Knowledge Base



This processor implements Anthropic's Contextual Retrieval technique:

- Extracts content from Word documents including text sections and tables

- Uses LLM to generate contextual information for each chunk

- Enhances chunks with context before embedding

"""

import re
from typing import List, Dict, Any, Optional
from pathlib import Path

from docx import Document as DocxDocument
from docx.table import Table
from docx.text.paragraph import Paragraph
from langchain.schema import Document
from markitdown import MarkItDown


class ContextualWordProcessor:
    """

    Contextual processor for Word documents using LLM enhancement

    """

    def __init__(self, llm_client=None):
        """

        Initialize the processor with an LLM client for contextual enhancement



        Args:

            llm_client: OpenAI client instance for generating context

        """
        self.llm_client = llm_client
        self.md_converter = MarkItDown()
        self.current_section_hierarchy = []
        self.section_counter = 0

        # Vietnamese contextual prompt template
        self.contextual_prompt_template = """<document>

{WHOLE_DOCUMENT}

</document>



Đây là đoạn văn bản cần được đặt trong ngữ cảnh của toàn bộ tài liệu:

<chunk>

{CHUNK_CONTENT}

</chunk>



Hãy cung cấp ngữ cảnh và tóm tắt ngắn gọn để giúp định vị đoạn văn này trong toàn bộ tài liệu ViettelPay Pro, nhằm cải thiện khả năng tìm kiếm thông tin. Chỉ trả lời bằng ngữ cảnh ngắn gọn, không cần giải thích thêm."""

    def process_word_document(self, file_path: str) -> List[Document]:
        """

        Main method to process a Word document into contextualized LangChain Documents



        Args:

            file_path: Path to the Word document



        Returns:

            List of contextualized LangChain Document objects

        """
        print(
            f"[INFO] Processing Word document with contextual enhancement: {file_path}"
        )

        if not Path(file_path).exists():
            raise FileNotFoundError(f"Word document not found: {file_path}")

        # Get the full document content using markitdown for context generation
        try:
            result = self.md_converter.convert(file_path)
            whole_document_content = result.text_content
            print(
                f"[INFO] Extracted full document content: {len(whole_document_content)} characters"
            )
        except Exception as e:
            print(f"[WARNING] Could not extract full document with markitdown: {e}")
            whole_document_content = ""

        # Load the document for structured processing
        doc = DocxDocument(file_path)

        # Extract all content with structure
        all_documents = []
        current_section_content = []
        current_section_title = "Introduction"
        current_section_level = 0

        for element in doc.element.body:
            # Check if it's a paragraph
            if element.tag.endswith("}p"):
                paragraph = Paragraph(element, doc)

                # Check if it's a heading
                heading_info = self._extract_heading_info(paragraph)

                if heading_info:
                    # Save previous section if it has content
                    if current_section_content:
                        section_doc = self._create_contextual_section_document(
                            current_section_title,
                            current_section_content,
                            current_section_level,
                            file_path,
                            whole_document_content,
                        )
                        if section_doc:
                            all_documents.append(section_doc)

                    # Start new section
                    current_section_title = heading_info["title"]
                    current_section_level = heading_info["level"]
                    current_section_content = []
                    self._update_section_hierarchy(
                        heading_info["level"], current_section_title
                    )

                else:
                    # Regular paragraph content
                    paragraph_text = paragraph.text.strip()
                    if paragraph_text:
                        current_section_content.append(paragraph_text)

            # Check if it's a table
            elif element.tag.endswith("}tbl"):
                table = Table(element, doc)
                table_documents = self._process_contextual_table(
                    table, current_section_title, file_path, whole_document_content
                )
                all_documents.extend(table_documents)

        # Don't forget the last section
        if current_section_content:
            section_doc = self._create_contextual_section_document(
                current_section_title,
                current_section_content,
                current_section_level,
                file_path,
                whole_document_content,
            )
            if section_doc:
                all_documents.append(section_doc)

        print(
            f"[SUCCESS] Extracted {len(all_documents)} contextualized documents from Word file"
        )
        return all_documents

    def _generate_context(self, chunk_content: str, whole_document: str) -> str:
        """

        Generate contextual information for a chunk using LLM



        Args:

            chunk_content: The text chunk to contextualize

            whole_document: The full document content for context



        Returns:

            Generated context string

        """
        if not self.llm_client or not whole_document:
            return ""

        try:
            # Prepare the prompt
            prompt = self.contextual_prompt_template.format(
                WHOLE_DOCUMENT=whole_document, CHUNK_CONTENT=chunk_content
            )

            # Call OpenAI API
            response = self.llm_client.chat.completions.create(
                model="gpt-4o-mini",  # Cost-effective model for context generation
                messages=[{"role": "user", "content": prompt}],
                max_tokens=200,
                temperature=0.1,  # Low temperature for consistent context generation
            )

            context = response.choices[0].message.content.strip()
            return context

        except Exception as e:
            print(f"[WARNING] Failed to generate context: {e}")
            return ""

    def _extract_heading_info(self, paragraph: Paragraph) -> Optional[Dict[str, Any]]:
        """

        Extract heading information from a paragraph

        """
        if paragraph.style.name.startswith("Heading"):
            try:
                level = int(paragraph.style.name.split()[-1])
                title = paragraph.text.strip()
                return {"title": title, "level": level}
            except (ValueError, IndexError):
                pass

        # Also check for manual heading patterns (like "# Title")
        text = paragraph.text.strip()
        if text.startswith("#"):
            level = len(text) - len(text.lstrip("#"))
            title = text.lstrip("#").strip()
            return {"title": title, "level": level}

        # Check for numbered sections like "1. Title", "1.1. Title"
        section_pattern = r"^(\d+\.(?:\d+\.)*)\s*(.+)$"
        match = re.match(section_pattern, text)
        if match:
            section_num = match.group(1)
            title = match.group(2)
            level = section_num.count(".")
            return {"title": title, "level": level}

        return None

    def _update_section_hierarchy(self, level: int, title: str):
        """Update the current section hierarchy"""
        # Trim hierarchy to current level
        self.current_section_hierarchy = self.current_section_hierarchy[: level - 1]

        # Add current section
        if len(self.current_section_hierarchy) < level:
            self.current_section_hierarchy.extend(
                [""] * (level - len(self.current_section_hierarchy))
            )

        if level <= len(self.current_section_hierarchy):
            self.current_section_hierarchy[level - 1] = title

    def _create_contextual_section_document(

        self,

        title: str,

        content: List[str],

        level: int,

        source_file: str,

        whole_document: str,

    ) -> Optional[Document]:
        """

        Create a contextualized Document object from section content

        """
        if not content:
            return None

        # Combine all paragraphs in the section
        original_content = f"# {title}\n\n" + "\n\n".join(content)

        # Generate contextual information
        context = self._generate_context(original_content, whole_document)

        # Combine context with original content
        if context:
            contextualized_content = f"{context}\n\n{original_content}"
            print(
                f"[INFO] Generated context for section '{title}': {len(context)} chars"
            )
        else:
            contextualized_content = original_content

        # Create metadata
        metadata = {
            "doc_type": "section",
            "section_title": title,
            "section_level": level,
            "section_hierarchy": " > ".join(
                filter(None, self.current_section_hierarchy)
            ),
            "source_file": Path(source_file).name,
            "content_type": "text_section",
            "section_id": f"section_{self.section_counter}",
            "has_context": bool(context),
            "original_content": original_content,
        }

        self.section_counter += 1

        return Document(page_content=contextualized_content, metadata=metadata)

    def _process_contextual_table(

        self, table: Table, current_section: str, source_file: str, whole_document: str

    ) -> List[Document]:
        """

        Process a table into multiple contextualized Document objects (one per row)

        """
        documents = []

        if not table.rows:
            return documents

        # Extract headers from first row
        headers = []
        first_row = table.rows[0]
        for cell in first_row.cells:
            headers.append(cell.text.strip())

        # Process each data row (skip header row)
        for row_idx, row in enumerate(table.rows[1:], 1):
            row_content = self._process_table_row(row, headers, row_idx)

            if row_content:
                # Generate contextual information for the table row
                context = self._generate_context(row_content, whole_document)

                # Combine context with original content
                if context:
                    contextualized_content = f"{context}\n\n{row_content}"
                    print(
                        f"[INFO] Generated context for table row {row_idx}: {len(context)} chars"
                    )
                else:
                    contextualized_content = row_content

                # Create metadata for the table row
                metadata = {
                    "doc_type": "table_row",
                    "section_title": current_section,
                    "section_hierarchy": " > ".join(
                        filter(None, self.current_section_hierarchy)
                    ),
                    "source_file": Path(source_file).name,
                    "content_type": "table_data",
                    "table_headers": " | ".join(headers),
                    "row_number": row_idx,
                    "table_id": f"table_{current_section}_{row_idx}",
                    "has_context": bool(context),
                    "original_content": row_content,
                }

                doc = Document(page_content=contextualized_content, metadata=metadata)
                documents.append(doc)

        return documents

    def _process_table_row(

        self, row, headers: List[str], row_idx: int

    ) -> Optional[str]:
        """

        Process a single table row into content string

        """
        row_data = []

        for cell in row.cells:
            cell_text = cell.text.strip()
            row_data.append(cell_text)

        # Skip empty rows
        if not any(row_data):
            return None

        # Create structured content from the row
        content_parts = []

        for header, cell_value in zip(headers, row_data):
            if cell_value:  # Only include non-empty cells
                content_parts.append(f"{header}: {cell_value}")

        if not content_parts:
            return None

        # Create the final content
        row_content = f"Bảng dữ liệu - Hàng {row_idx}:\n" + "\n".join(content_parts)

        return row_content

    def get_document_stats(self, documents: List[Document]) -> Dict[str, Any]:
        """

        Get statistics about the processed documents

        """
        stats = {
            "total_documents": len(documents),
            "sections": 0,
            "table_rows": 0,
            "doc_types": {},
            "sections_by_level": {},
            "contextualized_docs": 0,
            "non_contextualized_docs": 0,
        }

        for doc in documents:
            doc_type = doc.metadata.get("doc_type", "unknown")
            stats["doc_types"][doc_type] = stats["doc_types"].get(doc_type, 0) + 1

            # Count contextualized vs non-contextualized
            if doc.metadata.get("has_context", False):
                stats["contextualized_docs"] += 1
            else:
                stats["non_contextualized_docs"] += 1

            if doc_type == "section":
                stats["sections"] += 1
                level = doc.metadata.get("section_level", 0)
                stats["sections_by_level"][level] = (
                    stats["sections_by_level"].get(level, 0) + 1
                )
            elif doc_type == "table_row":
                stats["table_rows"] += 1

        return stats


# Example usage and testing
if __name__ == "__main__":
    # Test the processor (would need OpenAI client in practice)
    processor = ContextualWordProcessor()

    # Example file path (adjust as needed)
    test_file = "viettelpay_docs/raw/Nghiệp vụ.docx"

    try:
        documents = processor.process_word_document(test_file)

        # Show some example documents
        print(f"\n[INFO] First 3 documents:")
        for i, doc in enumerate(documents[:3]):
            print(f"\nDocument {i+1}:")
            print(f"Type: {doc.metadata.get('doc_type')}")
            print(f"Section: {doc.metadata.get('section_title')}")
            print(f"Has Context: {doc.metadata.get('has_context')}")
            print(f"Content preview: {doc.page_content[:200]}...")

        # Show stats
        stats = processor.get_document_stats(documents)
        print(f"\n[INFO] Processing statistics:")
        for key, value in stats.items():
            print(f"  {key}: {value}")

    except FileNotFoundError:
        print("[ERROR] Test file not found. Please adjust the file path.")
    except Exception as e:
        print(f"[ERROR] Error processing document: {e}")