yolocar / main.py
minh9972t12's picture
Update main.py
e6535be
import io
from typing import List, Dict
import uvicorn
import numpy as np
import uuid
from datetime import datetime
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from PIL import Image
import cv2
import yaml
from src.detection import YOLOv11Detector
from src.comparison import DamageComparator
from src.visualization import DamageVisualizer
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, as_completed
import torch
import gc
app = FastAPI(
title="Car Damage Detection API",
description="YOLOv11-based car damage detection with DINOv2 ReID (Memory Optimized)",
version="1.3.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# GLOBAL COMPONENTS - Load once at startup
detector = None
comparator = None
visualizer = None
# Model paths mapping - PT and ONNX versions
MODEL_PATHS = {
# PT models (original)
0: "models_small/best.pt", # Small v1 PT
1: "models_small_version_2/best.pt", # Small v2 PT,
2: "models_small_version3/best.pt", # Small v3 PT
3: "models_medium/best.pt", # Medium v1 PT
4: "models_medium_version_2/best.pt", # Medium v2 PT
5: "model_medium_version3/best.pt", # Medium v3 PT
# ONNX models (optimized with v1.19 + opset 21)
6: "models_small/best.onnx", # Small v1 ONNX
7: "models_small_version_2/best.onnx", # Small v2 ONNX,
8: "models_small_version3/best.onnx", # Small v3 ONNX
9: "models_medium/best.onnx", # Medium v1 ONNX
10: "models_medium_version_2/best.onnx", # Medium v2 ONNX,
11: "model_medium_version3/best.onnx" # Medium v3 ONNX,
}
# Config paths - ONNX uses same config as PT version
CONFIG_PATHS = {
0: "config.yaml", # Small v1 PT
1: "config_version2.yaml", # Small v2 PT
2: "config_version3.yaml", # Small v3 PT
3: "config.yaml", # Medium v1 PT
4: "config_version2.yaml", # Medium v2 PT
5: "config_version3.yaml", # Medium v3 PT
6: "config.yaml", # Small v1 ONNX
7: "config_version2.yaml", # Small v2 ONNX
8: "config_version3.yaml", # Small v3 ONNX
9: "config.yaml", # Medium v1 ONNX
10: "config_version2.yaml", # Medium v2 ONNX
11: "config_version3.yaml" # Medium v3 ONNX
}
# Mapping from PT index to ONNX index
PT_TO_ONNX_MAPPING = {
0: 5, # Small v1 -> ONNX
1: 6, # Small v2 -> ONNX
2: 7, # Medium v1 -> ONNX
3: 8, # Medium v2 -> ONNX
4: 9, # Medium v3 -> ONNX
5: 10, # Medium v3 -> ONNX
6: 11 # Medium v3 -> ONNX
}
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
"""
Enhanced model selection with performance optimization info
"""
# If user explicitly selects ONNX index (5..8) => use that ONNX with optimizations
if select_models in (6, 7, 8, 9, 10, 11):
onnx_path = Path(MODEL_PATHS.get(select_models, ""))
if not onnx_path.exists():
raise FileNotFoundError(
f"Requested ONNX model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
print(f"πŸš€ Selected ONNX model with MAXIMUM optimizations: {MODEL_PATHS[select_models]}")
return select_models
# Normalize to valid PT indices
if select_models not in (0, 1, 2, 3, 4, 5):
select_models = 2 # default to medium v1
# PT preferred for 0..4
pt_path = Path(MODEL_PATHS.get(select_models, ""))
if pt_path.exists():
print(f"πŸ“¦ Selected PyTorch model: {MODEL_PATHS[select_models]}")
return select_models
# If PT not found and prefer_onnx: fallback to ONNX with optimizations
onnx_index = PT_TO_ONNX_MAPPING.get(select_models)
if prefer_onnx and onnx_index is not None:
onnx_path = Path(MODEL_PATHS.get(onnx_index, ""))
if onnx_path.exists():
print(f"PT not found at {pt_path}, falling back to optimized ONNX {MODEL_PATHS[onnx_index]}")
return onnx_index
# No suitable file found
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
"""
Load detector with optimized ONNX Runtime v1.19 support
IMPORTANT: This loads GLOBAL instances that are shared across threads
"""
global detector, comparator, visualizer
actual_model_index = get_optimal_model_index(select_models, prefer_onnx)
# Get appropriate config file
config_file = CONFIG_PATHS.get(actual_model_index, "config.yaml")
# Load config
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
# Update config with selected model path
config['model']['path'] = MODEL_PATHS[actual_model_index]
# Save updated config to temp file
temp_config = f'temp_config_{actual_model_index}.yaml'
with open(temp_config, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
# Clear previous models from memory before loading new ones
if detector is not None:
del detector
if comparator is not None:
del comparator
if visualizer is not None:
del visualizer
# Force garbage collection
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Load all components with new config
detector = YOLOv11Detector(config_path=temp_config)
comparator = DamageComparator(config_path=temp_config)
visualizer = DamageVisualizer(config_path=temp_config)
# Log model info with optimization status
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
model_labels = [
"Small v1", "Small v2", "Small v3", "Medium v1", "Medium v2", "Medium v3",
"Small v1 ONNX", "Small v2 ONNX", "Small v3 ONNX", "Medium v1 ONNX", "Medium v2 ONNX", "Medium v3 ONNX"
]
if 0 <= select_models < len(model_labels):
model_size = model_labels[select_models]
else:
raise ValueError(f"select_models={select_models} must be 0-11")
optimization_status = "πŸš€ MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "πŸ“¦ Standard PyTorch"
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
print(f"βœ… DINOv2 ReID enabled for damage comparison")
return detector
# Initialize default detector with medium model (preferring ONNX for performance)
print("πŸš€ Initializing API with optimized ONNX Runtime and DINOv2 ReID support...")
detector = load_detector(2, prefer_onnx=True)
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
# Create necessary directories
UPLOADS_DIR = Path("uploads")
RESULTS_DIR = Path("results")
UPLOADS_DIR.mkdir(exist_ok=True)
RESULTS_DIR.mkdir(exist_ok=True)
# Mount static files directory
app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
@app.get("/")
async def root():
"""Root endpoint with enhanced model info"""
return {
"message": "Car Damage Detection API with YOLOv11 + DINOv2 ReID (Memory Optimized)",
"version": "1.3.0",
"optimizations": {
"onnx_runtime": "v1.19+ with opset 21 support",
"reid_model": "DINOv2 (Meta) - Superior visual feature extraction",
"memory_management": "Global model loading with ThreadPoolExecutor",
"performance_features": [
"Graph optimizations (ALL level)",
"DINOv2 ReID for cross-view damage matching",
"Memory-efficient threading",
"torch.no_grad() context for inference",
"Automatic CUDA cache clearing"
]
},
"model_options": {
"0": "Small model v1 (PyTorch)",
"1": "Small model v2 (PyTorch)",
"2": "Medium model v1 (PyTorch)",
"3": "Medium model v2 (PyTorch)",
"4": "Large model (PyTorch only)",
"5": "Small model v1 (ONNX - OPTIMIZED)",
"6": "Small model v2 (ONNX - OPTIMIZED)",
"7": "Medium model v1 (ONNX - OPTIMIZED)",
"8": "Medium model v2 (ONNX - OPTIMIZED)"
},
"recommendation": "Use indices 5-8 for maximum performance with ONNX optimizations",
"endpoints": {
"/docs": "API documentation",
"/detect": "Single/Multi image detection",
"/compare": "Compare before/after images (6 pairs) with DINOv2 ReID",
"/uploads/{filename}": "Access saved visualization images",
"/health": "Health check",
"/model-info": "Get current model information",
"/performance-info": "Get optimization details"
}
}
@app.get("/health")
async def health_check():
"""Enhanced health check with optimization status"""
health_info = {
"status": "healthy",
"model": "YOLOv11",
"reid": "DINOv2",
"backend": "ONNX/PyTorch",
"memory_optimization": "ThreadPoolExecutor with global models"
}
if detector and hasattr(detector, 'get_performance_info'):
perf_info = detector.get_performance_info()
health_info.update({
"model_type": perf_info.get("model_type", "Unknown"),
"optimization_status": "Optimized" if perf_info.get("model_type") == "ONNX" else "Standard"
})
return health_info
@app.get("/model-info")
async def get_model_info():
"""Get comprehensive information about currently loaded model"""
if detector is None:
return {"error": "No model loaded"}
model_path = detector.model_path
model_type = "ONNX" if model_path.endswith('.onnx') else "PyTorch"
info = {
"model_path": model_path,
"model_type": model_type,
"confidence_threshold": detector.confidence,
"iou_threshold": detector.iou_threshold,
"classes": detector.classes,
"reid_model": "DINOv2",
"optimization_status": "Optimized" if model_type == "ONNX" else "Standard"
}
if hasattr(detector, 'get_performance_info'):
perf_info = detector.get_performance_info()
info.update(perf_info)
return info
@app.post("/detect")
async def detect_single_image(
file: UploadFile = File(None),
files: List[UploadFile] = File(None),
select_models: int = Form(2),
prefer_onnx: bool = Form(True)
):
"""Multi-view detection with ONNX Runtime optimizations and DINOv2 ReID"""
try:
# Validate select_models
if select_models not in list(range(0, 12)):
raise HTTPException(status_code=400,
detail="select_models must be 0-8 (0-4=PyTorch, 5-8=ONNX optimized)")
# Load appropriate detector (if different from current)
current_detector = load_detector(select_models, prefer_onnx)
# Case 1: Single image (backward compatibility)
if file is not None:
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Perform detection
detections = current_detector.detect(image_bgr)
# Create visualization
visualized = visualizer.draw_detections(image_bgr, detections, 'new_damage')
# Save and return
filename = f"detection_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}.jpg"
output_path = UPLOADS_DIR / filename
cv2.imwrite(str(output_path), visualized)
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "πŸš€ OPTIMIZED" if model_type == "ONNX" else "πŸ“¦ Standard"
return JSONResponse({
"status": "success",
"model_type": model_type,
"optimization_status": optimization_status,
"detections": detections,
"statistics": {
"total_damages": len(detections['boxes']),
"damage_types": list(set(detections['classes']))
},
"visualized_image_path": f"uploads/{filename}",
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
"filename": filename
})
# Case 2: Multiple images with DINOv2 deduplication
elif files is not None:
detections_list = []
images = []
for idx, f in enumerate(files):
contents = await f.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
images.append(image_bgr)
detections = current_detector.detect(image_bgr)
detections_list.append(detections)
# Deduplicate across views using DINOv2
unique_damages = comparator.deduplicate_detections_across_views(detections_list, images)
# Create combined visualization
heights = [img.shape[0] for img in images]
widths = [img.shape[1] for img in images]
max_height = max(heights)
total_width = sum(widths)
combined_img = np.zeros((max_height, total_width, 3), dtype=np.uint8)
x_offset = 0
for img_idx, image in enumerate(images):
h, w = image.shape[:2]
if h != max_height:
image = cv2.resize(image, (w, max_height))
detections = detections_list[img_idx]
combined_img[:, x_offset:x_offset + w] = image
# Draw detections with unique IDs
for det_idx, bbox in enumerate(detections['boxes']):
# Find unique damage ID for this detection
damage_id = None
for uid, damage_info in unique_damages.items():
for d in damage_info['detections']:
if d['view_idx'] == img_idx and d['bbox'] == bbox:
damage_id = uid
break
# Draw with unique ID
x1, y1, x2, y2 = bbox
x1 += x_offset
x2 += x_offset
# Color based on unique ID
if damage_id:
color_hash = int(damage_id[-6:], 16)
color = ((color_hash >> 16) & 255, (color_hash >> 8) & 255, color_hash & 255)
else:
color = (0, 0, 255)
cv2.rectangle(combined_img, (x1, y1), (x2, y2), color, 2)
# Label
label = f"{damage_id[:8] if damage_id else 'Unknown'}"
cv2.putText(combined_img, label, (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
x_offset += w
# Save combined visualization
filename = f"multiview_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}.jpg"
output_path = UPLOADS_DIR / filename
cv2.imwrite(str(output_path), combined_img)
# Return results
total_detections = sum(len(d['boxes']) for d in detections_list)
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "πŸš€ OPTIMIZED" if model_type == "ONNX" else "πŸ“¦ Standard"
return JSONResponse({
"status": "success",
"mode": "multi_view_with_dinov2_reid",
"model_type": model_type,
"optimization_status": optimization_status,
"reid_model": "DINOv2",
"total_detections_all_views": total_detections,
"unique_damages_count": len(unique_damages),
"unique_damages": {
damage_id: {
"appears_in_views": info['views'],
"class": info['class'],
"avg_confidence": float(info['avg_confidence']),
"detection_count": len(info['detections'])
}
for damage_id, info in unique_damages.items()
},
"reduction_rate": f"{(1 - len(unique_damages) / total_detections) * 100:.1f}%" if total_detections > 0 else "0%",
"visualized_image_path": f"uploads/{filename}",
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
"message": f"Detected {total_detections} damages across {len(files)} views, "
f"identified {len(unique_damages)} unique damages using DINOv2 ReID"
})
else:
raise HTTPException(status_code=400, detail="No image provided")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
def process_single_position_threaded(
i: int,
before_contents: bytes,
after_contents: bytes,
timestamp_str: str,
session_id: str
) -> Dict:
"""
Process single position comparison using GLOBAL models (thread-safe)
No model loading here - uses global instances
"""
# Use GLOBAL instances - no loading
global detector, comparator, visualizer
# Preprocess images
before_img = Image.open(io.BytesIO(before_contents)).convert("RGB")
after_img = Image.open(io.BytesIO(after_contents)).convert("RGB")
before_np = np.array(before_img)
after_np = np.array(after_img)
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
# Detect using global detector
before_detections = detector.detect(before_bgr)
after_detections = detector.detect(after_bgr)
# Compare using global comparator with DINOv2 ReID
comparison = comparator.analyze_damage_status(
before_detections, after_detections,
before_bgr, after_bgr
)
# Visualize using global visualizer
vis_img = visualizer.create_comparison_visualization(
before_bgr, after_bgr,
before_detections, after_detections,
comparison
)
vis_filename = f"comparison_{timestamp_str}_{session_id}_pos{i + 1}.jpg"
vis_path = UPLOADS_DIR / vis_filename
cv2.imwrite(str(vis_path), vis_img)
vis_url = f"http://localhost:8000/uploads/{vis_filename}"
# Clear any GPU memory if used
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Return result
return {
f"position_{i + 1}": {
"case": comparison['case'],
"message": comparison['message'],
"statistics": comparison['statistics'],
"new_damages": comparison['new_damages'],
"matched_damages": comparison['matched_damages'],
"repaired_damages": comparison['repaired_damages'],
"using_reid": comparison['statistics'].get('using_reid', True),
"reid_model": comparison['statistics'].get('reid_model', 'DINOv2'),
"visualization_path": f"uploads/{vis_filename}",
"visualization_url": vis_url,
"filename": vis_filename
},
"before_detections": {
"boxes": [np.array(box).tolist() for box in before_detections['boxes']],
"confidences": [float(c) for c in before_detections['confidences']],
"classes": before_detections['classes']
},
"after_detections": {
"boxes": [np.array(box).tolist() for box in after_detections['boxes']],
"confidences": [float(c) for c in after_detections['confidences']],
"classes": after_detections['classes']
},
"_before_bgr": before_bgr, # chỉ dΓΉng nα»™i bα»™
"_after_bgr": after_bgr # chỉ dΓΉng nα»™i bα»™
}
@app.post("/compare")
async def compare_vehicle_damages(
# Before delivery images (6 positions)
before_1: UploadFile = File(...),
before_2: UploadFile = File(...),
before_3: UploadFile = File(...),
before_4: UploadFile = File(...),
before_5: UploadFile = File(...),
before_6: UploadFile = File(...),
# After delivery images (6 positions)
after_1: UploadFile = File(...),
after_2: UploadFile = File(...),
after_3: UploadFile = File(...),
after_4: UploadFile = File(...),
after_5: UploadFile = File(...),
after_6: UploadFile = File(...),
# Model selection
select_models: int = Form(2),
prefer_onnx: bool = Form(True)
):
"""
Enhanced comparison with DINOv2 ReID and Memory Optimization
Uses ThreadPoolExecutor with global models to avoid OOM
"""
try:
# Validate select_models
if select_models not in list(range(0, 12)):
raise HTTPException(status_code=400,
detail="select_models must be 0-10 (0-5=PyTorch, 6-11=ONNX optimized)")
# Load appropriate detector if different from current
current_detector = load_detector(select_models, prefer_onnx)
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
# Read contents first
before_contents_list = [await img.read() for img in before_images]
after_contents_list = [await img.read() for img in after_images]
# Overall statistics
total_new_damages = 0
total_existing_damages = 0
total_matched_damages = 0
session_id = str(uuid.uuid4())[:8]
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
position_results = []
all_visualizations = []
image_pairs = []
all_before_images = []
all_after_images = []
all_before_detections = []
all_after_detections = []
# Use ThreadPoolExecutor to share memory (avoid OOM)
print(f"πŸ”„ Processing {len(before_images)} image pairs using ThreadPoolExecutor...")
with ThreadPoolExecutor(max_workers=3) as executor: # Limit workers to avoid memory issues
futures = [
executor.submit(
process_single_position_threaded,
i,
before_contents_list[i],
after_contents_list[i],
timestamp_str,
session_id
)
for i in range(6)
]
for future in as_completed(futures):
result = future.result()
pos_key = list(result.keys())[0] # e.g., 'position_1'
position_results.append(result)
all_visualizations.append(result[pos_key]["visualization_url"])
# Collect for deduplication
image_pairs.append((result["_before_bgr"], result["_after_bgr"]))
all_before_images.append(result["_before_bgr"])
all_after_images.append(result["_after_bgr"])
result.pop("_before_bgr", None)
result.pop("_after_bgr", None)
all_before_detections.append(result["before_detections"])
all_after_detections.append(result["after_detections"])
# Update statistics
comparison = result[pos_key]
total_new_damages += len(comparison["new_damages"])
total_existing_damages += len(comparison["repaired_damages"])
total_matched_damages += len(comparison["matched_damages"])
# Sort position_results by position number
position_results.sort(key=lambda x: int(list(x.keys())[0].split('_')[1]))
# Deduplicate BEFORE damages across all 6 views using DINOv2
print("πŸ” Deduplicating damages across views using DINOv2...")
unique_before = comparator.deduplicate_detections_across_views(
all_before_detections, all_before_images
)
# Deduplicate AFTER damages across all 6 views using DINOv2
unique_after = comparator.deduplicate_detections_across_views(
all_after_detections, all_after_images
)
print(
f"βœ… Before: {sum(len(d['boxes']) for d in all_before_detections)} detections β†’ {len(unique_before)} unique")
print(f"βœ… After: {sum(len(d['boxes']) for d in all_after_detections)} detections β†’ {len(unique_after)} unique")
# Determine overall case with deduplication
actual_new_damages = max(0, len(unique_after) - len(unique_before))
overall_case = "CASE_3_SUCCESS"
overall_message = "Successful delivery - No damage detected"
if actual_new_damages > 0:
overall_case = "CASE_2_NEW_DAMAGE"
overall_message = f"Error during delivery - {actual_new_damages} new unique damage(s) detected"
elif len(unique_before) > 0 and actual_new_damages <= 0:
overall_case = "CASE_1_EXISTING"
overall_message = "Existing damages from beginning β†’ Delivery completed"
# Create summary grid
grid_results = [res[list(res.keys())[0]] for res in position_results]
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
grid_path = UPLOADS_DIR / grid_filename
cv2.imwrite(str(grid_path), grid_img)
grid_url = f"http://localhost:8000/uploads/{grid_filename}"
timestamp = datetime.now().isoformat()
# Clean up memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Enhanced response
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "πŸš€ OPTIMIZED" if model_type == "ONNX" else "πŸ“¦ Standard"
return JSONResponse({
"status": "success",
"session_id": session_id,
"timestamp": timestamp,
"model_type": model_type,
"optimization_status": optimization_status,
"reid_enabled": True,
"reid_model": "DINOv2",
"memory_optimization": "ThreadPoolExecutor with global models",
"overall_result": {
"case": overall_case,
"message": overall_message,
"statistics": {
"total_new_damages": int(total_new_damages),
"total_matched_damages": int(total_matched_damages),
"total_repaired_damages": int(total_existing_damages),
"unique_damages_before": int(len(unique_before)),
"unique_damages_after": int(len(unique_after)),
"actual_new_unique_damages": int(actual_new_damages)
}
},
"deduplication_info": {
"model": "DINOv2",
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
"before_unique_damages": int(len(unique_before)),
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
"after_unique_damages": int(len(unique_after)),
"duplicate_reduction_rate": f"{(1 - len(unique_after) / sum(len(d['boxes']) for d in all_after_detections)) * 100:.1f}%"
if sum(len(d['boxes']) for d in all_after_detections) > 0 else "0%"
},
"position_results": position_results,
"summary_visualization_path": f"uploads/{grid_filename}",
"summary_visualization_url": grid_url,
"all_visualizations": all_visualizations,
"recommendations": {
"action_required": bool(actual_new_damages > 0),
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
else "Proceed with delivery completion"
},
"performance_note": f"Using {model_type} + DINOv2 ReID with memory optimization"
})
except Exception as e:
# Clean up on error
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
if __name__ == "__main__":
import os
uvicorn.run(
"main:app",
host="0.0.0.0",
port=int(os.environ.get("PORT", 7860)),
reload=False,
log_level="info"
)